INVESTIGADORES
MANDRINI Cristina Hemilse
congresos y reuniones científicas
Título:
Modelling quiet-Sun coronal loops
Autor/es:
MANDRINI, C.H.; MAC CORMACK, C.; LÓPEZ FUENTES, M.C.; LLOVERAS, D.G.; VÁSQUEZ, A.M.
Lugar:
Atenas
Reunión:
Congreso; 44th COSPAR General Assembly; 2022
Resumen:
The structure of the solar corona is made of magnetic flux tubes or loops. Due to the lack of contrast with their environment, observing and studying coronal loops in the quiet Sun is extremely difficult. We use a differential emission measure tomographic (DEMT) technique to reconstruct, from a series of EUV images covering an entire solar rotation, the average 3D distribution of the thermal properties of the coronal plasma. By combining the DEMT products with extrapolations of the global coronal magnetic field, we reconstruct coronal loops and obtain the energy input required to keep them at the typical million-degree temperatures of the corona. We statistically study a large number of reconstructed loops for Carrington rotation (CR) 2082 obtaining a series of typical average loops of different lengths. We look for relations between the thermal properties and the lengths of the constructed typical loops and find similar results to those found in a previous work. We analyze the typical loop properties by comparing them with the zero-dimensional (0D) hydrodynamic model Enthalpy-Based Thermal Evolution of Loops (EBTEL). We explore two heating scenarios. In the first one, we apply a constant heating rate assuming that typical loops are in quasi-static equilibrium. In the second scenario we heat the plasma in the loops using short impulsive events. We find that the reconstructed typical loops are "overdense" with respect to quasi-static equilibrium solutions. Impulsive heating, on the other hand, reproduces better the observed densities and temperatures for the shorter and approximately semicircular loops. We suggest that to properly assess the physical characteristics of the analyzed loops, it would be necessary to use a more sophisticated model with which to study loop temperature and density profiles and test localized heating at different locations.