INVESTIGADORES
GUEVARA Maria Gabriela
artículos
Título:
Genome wide analyses of aspartic proteases on potato genome (Solanum tuberosum): generating new tools to improve the resistance of plants to abiotic stress
Autor/es:
NORERO, NATALIA SIGRID; REY BURUSCO, MARÍA FLORENCIA; D'IPPOLITO SEBASTIAN; DECIMA ONETO, CECILIA; MASSA, GABRIELA ALEJANDRA; CASTELLOTE, MARTÍN ALFREDO; FEINGOLD, SERGIO ENRIQUE; GUEVARA, MARÍA GABRIELA
Revista:
Plants
Editorial:
MDPI
Referencias:
Lugar: Basel; Año: 2022 vol. 11 p. 1 - 21
ISSN:
2223-7747
Resumen:
Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize S. tuberosum aspartic proteases. Gene structure, chromosome and protein domain organization, phylogeny and subcellular predicted localization were analyzed and integrated with RNAseq data from different tissues, organs, and conditions focused on abiotic stress. Sixty-two aspartic protease genes were retrieved from the potato genome, distributed in 12 chromosomes. A high number of intronless genes, segmental and tandem duplications were detected. Phylogenetic analysis revealed 8 StAP groups named from StAPI to StAPVIII that were differentiated into typical (StAPI), nucellin-like (StAPIIIa), and atypical aspartic proteases (StAPII, StAPIIIb to StAPVIII). RNAseq data analyses showed that gene expression was consistent with the presence of cis-acting regulatory elements on StAP promoter regions related to water deficit. The study presents the first identification and characterization of 62 aspartic protease genes and proteins on the potato genome and provides the raw material for functional gene determinations and potato breeding programs including gene editing mediated by CRISPR.