INVESTIGADORES
GENDE Mauricio Alfredo
artículos
Título:
A NEW IONOSPHERE MONITORING TECHNOLOGY BASED ON GPS
Autor/es:
BRUNINI C.; MEZA A.; AZPILICUETA F.; VAN ZELE M.A.; GENDE M.; DÍAZ A.
Revista:
ASTROPHYSICS AND SPACE SCIENCE
Editorial:
Kluwer Academic Publishers
Referencias:
Año: 2004 vol. 290 p. 415 - 429
ISSN:
0004-640X
Resumen:
Although global positioning system (GPS) was originally planned as a satellite-basedradio-navigation system for military purposes, civilian users have significantly increased their access to the system for both, commercial and scientific applications. Almost 400 permanent GPS tracking stations have been stablished around the globe with the main purpose of supporting scientific research.In addition, several GPS receivers on board of lowEarth orbit satellites fitted with special antennas that focus on Earth?s horizon, are tracking the radio signals broadcasted by the high-orbiting GPS satellites, as they rise and set on Earth horizon. The data of these ground and space-born GPS receivers, readily accessible through Internet in a ?virtual observatory? managed by the International GPS Service, are extensively used for many researches and might possibly ignite a revolution in Earth remote sensing.By measuring the changes in the time it takes for the GPS signals to arrive at the receiver as theytravel through Earth?s atmosphere, scientists can derive a surprising amount of information about the Earth?s ionosphere, a turbulent shroud of charged particles that, when stimulated by solar flares, can disrupt communications around the world. This contribution presents a methodology to obtain high temporal resolution images of the ionospheric electron content that lead to two-dimensional vertical total electron content maps and three-dimensional electron density distribution. Some exemplifying results are shown at the end of the paper.