INVESTIGADORES
BREGONZIO DIAZ Claudia
artículos
Título:
Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats.
Autor/es:
SELTZER A, BREGONZIO C, ARMANDO I, BAIARDI G, SAAVEDRA JM
Revista:
BRAIN RESEARCH
Referencias:
Año: 2004 vol. 1098 p. 9 - 18
ISSN:
0006-8993
Resumen:
Peripheral and brain angiotensin II AT(1) receptor blockade decreases high blood pressure, stress, and neuronal injury. To clarify the effects of long-term brain Ang II receptor blockade, the AT(1) blocker, candesartan, was orally administered to spontaneously hypertensive rats (SHRs) for 40 days, followed by intraventricular injection of 25 ng of Ang II. Before Ang II injection, AT(1) receptor blockade normalized blood pressure and decreased plasma adrenocorticotropic hormone (ACTH) and corticosterone. After central administration of excess Ang II, the reduction of ACTH and corticosterone release induced by AT(1) receptor blockade no longer occurred. Central Ang II administration to vehicle-treated SHRs further increased blood pressure, provoked drinking, increased tyrosine hydroxylase (TH) mRNA expression in the locus coeruleus, and stimulated sympathoadrenal catecholamine release. Pretreatment with the AT(1) receptor antagonist eliminated Ang II-induced increases in blood pressure, water intake, and sympathoadrenal catecholamine release; inhibited peripheral and brain AT(1) receptors; increased AT(2) receptor binding in the locus coeruleus, inferior olive, and adrenal cortex; and decreased AT(2) receptor binding in the adrenal medulla. Inhibition of brain AT(1) receptors correlated with decreased TH transcription in the locus coeruleus, indicating a decreased central sympathetic drive. This, and the diminished adrenomedullary AT(1) and AT(2) receptor stimulation, result in decreased sympathoadrenomedullary stimulation. Oral administration of AT(1) antagonists can effectively block central actions of Ang II, regulating blood pressure and reaction to stress, and selectively and differentially modulating sympathoadrenal response and the hypothalamic-pituitary-adrenal stimulation produced by brain Ang II--effects of potential therapeutic importance.