INVESTIGADORES
ALVAREZ Vera Alejandra
artículos
Título:
Water uptake behavior of layered silicate/starch–polycaprolactone blend nanocomposites
Autor/es:
CLAUDIO JAVIER PÉREZ; VERA ALVAREZ; IÑAKI MONDRAGÓN; ANALÍA VÁZQUEZ
Revista:
POLYMER INTERNATIONAL
Editorial:
Wiley
Referencias:
Año: 2008 vol. 57 p. 247 - 253
ISSN:
0959-8103
Resumen:
The water uptake behavior of biodegradable layered silicate/starch–polycaprolactone blend nanocomposites was evaluated. Three different commercial layered silicates (Cloisite Na+, Cloisite 30B and Cloisite 10A) were used as reinforcement nanofillers. Tests were carried out in two different environments: 60 and 90% relative humidity using glycerol solutions. The clay/starch–polycaprolactone blend nanocomposites were obtained by melt intercalation and characterized by gravimetric measurements and tensile tests. The intercalated structure (determined by wide-angle X-ray diffraction) showed a decrease in water absorption as a function of clay content probably due to the decrease of the mean free path of water molecules. The diffusion coefficient decreased with clay incorporation but a further increase in the clay content did not show an important effect on this parameter. Elongation at break increased with exposure showing matrix plasticization. Mechanical properties of the nanocomposites deteriorated after exposure whereas they remained almost constant in the case of the neat matrix.+, Cloisite 30B and Cloisite 10A) were used as reinforcement nanofillers. Tests were carried out in two different environments: 60 and 90% relative humidity using glycerol solutions. The clay/starch–polycaprolactone blend nanocomposites were obtained by melt intercalation and characterized by gravimetric measurements and tensile tests. The intercalated structure (determined by wide-angle X-ray diffraction) showed a decrease in water absorption as a function of clay content probably due to the decrease of the mean free path of water molecules. The diffusion coefficient decreased with clay incorporation but a further increase in the clay content did not show an important effect on this parameter. Elongation at break increased with exposure showing matrix plasticization. Mechanical properties of the nanocomposites deteriorated after exposure whereas they remained almost constant in the case of the neat matrix.