INVESTIGADORES
CAVIGLIA Octavio Pedro
artículos
Título:
Maize kernel growth and kernel water relations as affected by nitrogen supply
Autor/es:
MELCHIORI, R.J.M.; CAVIGLIA, O.P.
Revista:
FIELD CROPS RESEARCH
Editorial:
ELSEVIER
Referencias:
Año: 2008 vol. 108 p. 193 - 205
ISSN:
0378-4290
Resumen:
Improving maize (Zea mays L.) growing conditions near flowering by applying nitrogen (N) could affect both kernel number per unit area (KN) and potential kernel weight (KW). Potential kernel weight can be estimated with maximum kernel water content (MKWC), as final kernel weight and kernel water relations are strongly associated in maize. At the crop level, the product of KN per unit area and MKWC could provide an appropriate index of potential sink capacity. The main objective of this study was to determine if the decrease in potential sink capacity (i.e. the product of MKWC and KN), under N deficit and with a late planting date, is due to MKWC or KN reductions. Additionally, we evaluated sink growth rate per unit area (i.e. the product of KN and kernel growth rate) during grain fill period as related to potential sink capacity. Three N rates under optimal and late planting dates and two hybrids were evaluated in experiments carried out at Paraná, Argentina (31º50?S; 60 º31? W) during 2002-03 and 2003-04 growing seasons (season 1 and 2, respectively). Except for the late planting date during season 1, there was a significant positive response on grain yield, KN, KW, and MKWC to N supply. Experiments explored a broad range of KN, from 1645 to 5066 kernel m-2. MKWC and KN were positively correlated for DK682. Nitrogen increased the potential sink capacity and sink growth rate only as KN increases from a particular threshold in both hybrids. The sink growth rate was largely related to potential sink capacity, as MKWC was highly correlated with KGR across all treatments. Our analytical approach, considering potential sink capacity as a product of KN and MKWC, is integrative of sink demand both for individual kernel and crop levels. This work highlights the role of early establishment of potential sink capacity on yield determination under a wide range of N conditions.