CICTERRA   20351
CENTRO DE INVESTIGACIONES EN CIENCIAS DE LA TIERRA
Unidad Ejecutora - UE
artículos
Título:
The Sierra Norte-Ambargasta Batholith: Cambrian magmatism formed in a transpressional belt along the western edge of the Río de la Plata craton
Autor/es:
IANNIZZOTTO, N.F.; RAPELA, C.W.; BALDO, E.G; GALINDO, C.; FANNING, C.M; PANKHURST, R.J
Revista:
JOURNAL OF SOUTH AMERICAN EARTH SCIENCES
Editorial:
PERGAMON-ELSEVIER SCIENCE LTD
Referencias:
Lugar: Amsterdam; Año: 2013 vol. 42 p. 127 - 143
ISSN:
0895-9811
Resumen:
The Sierra Norte-Ambargasta batholith is one of the largest plutonic expressions of the Pampean orogeny in western Argentina. A thorough petrographic, geochemical, isotopic (Sr and Nd) and geochronological (UePb SHRIMP) study is reported. The batholith comprises granitoid rocks that may be subdivided into those affected by Pampean D2 dextral shearing and mylonization and those emplaced after deformation had ceased; representative samples gave UePb zircon ages of 537 4 Ma and 530 4 Ma respectively. The earlier, dominant, groupwere derived largely frommetaluminous calc-alkaline subduction-related magmas, whereas the late granites are peraluminous. However, all have relatively high initial 87Sr/86Sr ratios (0.706 to at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. earlier, dominant, groupwere derived largely frommetaluminous calc-alkaline subduction-related magmas, whereas the late granites are peraluminous. However, all have relatively high initial 87Sr/86Sr ratios (0.706 to at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. SHRIMP) study is reported. The batholith comprises granitoid rocks that may be subdivided into those affected by Pampean D2 dextral shearing and mylonization and those emplaced after deformation had ceased; representative samples gave UePb zircon ages of 537 4 Ma and 530 4 Ma respectively. The earlier, dominant, groupwere derived largely frommetaluminous calc-alkaline subduction-related magmas, whereas the late granites are peraluminous. However, all have relatively high initial 87Sr/86Sr ratios (0.706 to at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. earlier, dominant, groupwere derived largely frommetaluminous calc-alkaline subduction-related magmas, whereas the late granites are peraluminous. However, all have relatively high initial 87Sr/86Sr ratios (0.706 to at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. ePb SHRIMP) study is reported. The batholith comprises granitoid rocks that may be subdivided into those affected by Pampean D2 dextral shearing and mylonization and those emplaced after deformation had ceased; representative samples gave UePb zircon ages of 537 4 Ma and 530 4 Ma respectively. The earlier, dominant, groupwere derived largely frommetaluminous calc-alkaline subduction-related magmas, whereas the late granites are peraluminous. However, all have relatively high initial 87Sr/86Sr ratios (0.706 to at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. earlier, dominant, groupwere derived largely frommetaluminous calc-alkaline subduction-related magmas, whereas the late granites are peraluminous. However, all have relatively high initial 87Sr/86Sr ratios (0.706 to at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. ePb zircon ages of 537 4 Ma and 530 4 Ma respectively. The earlier, dominant, groupwere derived largely frommetaluminous calc-alkaline subduction-related magmas, whereas the late granites are peraluminous. However, all have relatively high initial 87Sr/86Sr ratios (0.706 to at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. 87Sr/86Sr ratios (0.706 to at least 0.710, strongly negative åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen. åNdt values (1.7 to5.9) and, in some cases inherited 600 Ma and 970Ma zircon, similar to the isotopic and zircon provenance seen in the metamorphic host rocks. A high degree of contamination of the magmas, possibly anatexis in the case of the post-mylonite granite, is related to emplacement during the latestage transpressional docking of the Pampean terrane against the Rio de la Plata craton. The absence of detrital zircon derived from the craton in either the Pampean metasedimentary host rocks or the batholith supports this collisional model for the Pampean orogen.