INVESTIGADORES
DAMIANI Maria Elena Teresa
artículos
Título:
Microfilaments and Microtubules regulate recycling from phagosomes.
Autor/es:
DAMIANI, MT; COLOMBO, MI
Revista:
EXPERIMENTAL CELL RESEARCH
Editorial:
Elsevier Science- Academic Press
Referencias:
Lugar: USA; Año: 2003 vol. 289 p. 152 - 161
ISSN:
0014-4827
Resumen:
It is clear that the uptake of large particles is driven by a finely controlled rearrangement of the actin cytoskeleton. Here, we present evidence that myosin motors and microtubules also participate in the Fc-mediated internalization process in macrophages. During phagocytosis, a substantial amount of plasma membrane is internalized without a net reduction in cell surface area, implying an active mechanism for membrane recycling. Despite the importance of this recycling pathway in phagosome maturation and in the retrieval of immunogenic peptides from phagosomes, the cytoskeletal requirements are largely unknown. To study this vesicle-mediated recycling transport, we used a biochemical assay and we developed a method to follow this process by confocal fluorescence microscopy. Interestingly, recycling from the phagosomal compartment was increased when the actin cortex was thinned by inhibitors of F-actin. In contrast, depolymerization of microtubules diminished both phagocytosis and recycling from phagosomes. Our results suggest that actin and microtubules are needed not only for phagosome biogenesis but also at other steps along the phagocytic pathway.-mediated internalization process in macrophages. During phagocytosis, a substantial amount of plasma membrane is internalized without a net reduction in cell surface area, implying an active mechanism for membrane recycling. Despite the importance of this recycling pathway in phagosome maturation and in the retrieval of immunogenic peptides from phagosomes, the cytoskeletal requirements are largely unknown. To study this vesicle-mediated recycling transport, we used a biochemical assay and we developed a method to follow this process by confocal fluorescence microscopy. Interestingly, recycling from the phagosomal compartment was increased when the actin cortex was thinned by inhibitors of F-actin. In contrast, depolymerization of microtubules diminished both phagocytosis and recycling from phagosomes. Our results suggest that actin and microtubules are needed not only for phagosome biogenesis but also at other steps along the phagocytic pathway.