INVESTIGADORES
ALDER Viviana Andrea
artículos
Título:
Microplanktonic distributional patterns west of the Antarctic Peninsula, with special emphasis on the tintinnids.
Autor/es:
ALDER, V.A.; BOLTOVSKOY, D.
Revista:
POLAR BIOLOGY
Editorial:
Springer-Verlag
Referencias:
Año: 1991 vol. 11 p. 103 - 112
ISSN:
0722-4060
Resumen:
Microplankton was sampled with a centrifugal suction pump in the surface layer (approx. 9 m) of the Bellingshausen Sea and the Bransfield Strait in March 1987, and concentrated with a 26 um-mesh net. Bulk microplanktonic settling volumes were assessed, silicoflagellates and large thecate dinoflagellates were counted, and tintinnids were counted and identified to species. Average (and maximum) values for the entire area surveyed were as follows, settling volume: 6.7 (43.3) ml/m3; silicoflagellates: 674 (7777) ind./l, 0.57 (6.54) mg C/m3; dinoflagellates: 109 (1321) ind./l, 1.40 (16.98) mg C/m3; tintinnids: 52 (589) ind./l, 1.15 (9.87) mg C/m3. The three geographic zones defined objectively on the basis of tintinnid specific assemblages also differed sharply in their surface salinity, overall microplanktonic abundance and bulk settling volume. The Bransfield Strait, with lowest settling volume values (2.1 ml/m3) and cell concentrations, was characterized by the dominance of Cymatocylis affinis/convallaria. In waters around the tip of the Antarctic Peninsula microplanktonic settling volumes averaged 4.6 ml/m3, cell concentrations were intermediate, and 79% of the tintinnids were represented by Codonellopsis balechi. The Bellingshausen Sea was characterized by the lowest salinities and the highest settling volumes (8.7 ml/m3) and cell counts; Laackmanniella spp. and Cymatocylis drygalskii, f. typica dominated this area. Almost all biological variables were significantly intercorrelated, and showed strong and mostly significant negative correlations with surface salinity, yet relationships between enhanced standing stock and ice meltwater were not obvious; rather, highest microplanktonic concentrations seemed to be due to ice-associated growth. Extremely high spatial correlations were found between the tintinnids and the dinoflagellates (r2: 0.941), suggesting the existence of close links between these two groups. Tintinnid species-specific assemblages show a coherent distributional pattern and well defined environment-related trends; most clearly differentiated preferences are exhibited by Laackmanniella prolongata (closely associated with ice-covered areas), Cymatocylis affinis/convallaria (oligotrophic open-ocean waters), and Codonellopsis balechi (coastal regions).