IAFE   05512
INSTITUTO DE ASTRONOMIA Y FISICA DEL ESPACIO
Unidad Ejecutora - UE
artículos
Título:
Can brown dwarfs survive on close orbits around convective stars?
Autor/es:
DÍAZ, R. F.; DAMIANI, C.
Revista:
ASTRONOMY AND ASTROPHYSICS
Editorial:
EDP SCIENCES S A
Referencias:
Lugar: Paris; Año: 2016 vol. 589
ISSN:
0004-6361
Resumen:
Context. The mass range of brown dwarfs extends across the planetary domain to stellar objects. There is a relative paucity of brown dwarfs companions around FGKM-type stars compared to exoplanets for orbital periods of less than a few years, but most of the short-period brown dwarf companions that are fully characterised by transits and radial velocities are found around F-type stars. Aims: We examine the hypothesis that brown dwarf companions could not survive on close orbit around stars with important convective envelopes because the tides and angular momentum loss, the result of magnetic braking, would lead to a rapid orbital decay with the companion being quickly engulfed. Methods: We use a classical Skumanich-type braking law and constant time-lag tidal theory to assess the characteristic timescale for orbital decay for the brown dwarf mass range as a function of the host properties. Results: We find that F-type stars may host massive companions for a significantly longer time than G-type stars for a given orbital period, which may explain the paucity of G-type hosts for brown dwarfs with an orbital period less than five days. On the other hand, we show that the small radius of early M-type stars contributes to orbital decay timescales that are only half those of F-type stars, despite their more efficient tidal dissipation and magnetic braking. For fully convective later type M-dwarfs, orbital decay timescales could be orders of magnitude greater than for F-type stars. Moreover, we find that, for a wide range of values of tidal dissipation efficiency and magnetic braking, it is safe to assume that orbital decay for massive companions can be neglected for orbital periods greater than ten days. Conclusions: For orbital periods greater than ten days, brown dwarf occurrence should largely be unaffected by tidal decay, whatever the mass of the host. On closer orbital periods, the rapid engulfment of massive companions could explain the lack of G and K-type hosts in the sample of known systems with transiting brown dwarfs. However, the paucity of M-type hosts cannot be an effect of tidal decay alone, but may be the result of a selection effect in the sample and/or the formation mechanism.