INIFTA   05425
INSTITUTO DE INVESTIGACIONES FISICO-QUIMICAS TEORICAS Y APLICADAS
Unidad Ejecutora - UE
congresos y reuniones científicas
Título:
Photosensitization of 2’-deoxyadenosine 5’-monophosphate by lumazine: mechanism and products analysis
Autor/es:
M. PAULA DENOFRIO; ANDRÉS H. THOMAS; ESTHER OLIVEROS; CAROLINA LORENTE
Lugar:
Ferrara
Reunión:
Congreso; XXIII IUPAC Symposium on Photochemistry; 2010
Institución organizadora:
IUPAC
Resumen:
UV radiation induces damages to the DNA molecule and its components through photosensitized reactions[1,2]. Among these processes, photosensitized oxidations may occur through electron transfer or hydrogen abstraction (type I mechanism) and/or the production of singlet molecular oxygen (1O2) (type II mechanism). Lumazines belongs to an important family  (Pteridines) of heterocyclic compounds present in biological systems as biosynthetic precursors and/or products of metabolic degradation. Some pteridines are able to photoinduce chemical changes to double-stranded DNA[3,4]. In recent studies it was demonstrated that both type I and type II mechanisms can take place simultaneously under UV-A irradiation [5,6,7]. To evaluate the capability of lumazines to act as photosensitizers through type I mechanism, we have investigated the oxidation of 2’-deoxyadenosine 5’-monophosphate (dAMP) photosensitized by lumazine (pteridine-2,4(1,3H)-dione; Lum) in aqueous solutions under UV irradiation. The photochemical reactions were followed by UV/VIS spectrophotometry, HPLC, electrochemical measurement of dissolved O2 and an enzymatic method for H2O2 determination. Photoproducts were analyzed by means of electrospray ionization mass spectrometry. Mechanistic analysis indicates that the acid form of Lum (pH=5.5) photoinduces the degradation of dAMP by an electron transfer process. In this mechanism, the excitation of Lum is followed by an electron transfer from the dAMP molecule to the Lum triplet excited state, leading to the formation of the corresponding ion radicals (Lum•– and dAMP•+). In the following step, the electron transfer from Lum•– to O2 regenerates Lum and forms the superoxide anion. The latter may disproportionate with its conjugated acid (HO2 •) to form H2O2 or react with dAMP•+ to regenerate dAMP. Some photoproducts were found and analysed. In particular, 8-oxo-dAMP is formed during the photosensitization of dAMP by Lum, a typical product of type I photosensitized reactions. In contrast, no evidence of a photochemical reaction induced by the basic form of Lum (pH 10.5) was observed. [1] Ravanat, J. -L.; Douki, T.; Cadet, J.; J. Photochem. Photobiol. B: Biol. 2001, 63, 88-102. [2] Cadet, J.; Sage, E.; Douki, T.; Mutat. Res. 2005, 571, 3-17. [3] Ito, K.; Kawanishi, S.; Biochemistry 1997, 36, 1774–1781. [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [3] Ito, K.; Kawanishi, S.; Biochemistry 1997, 36, 1774–1781. [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [2] Cadet, J.; Sage, E.; Douki, T.; Mutat. Res. 2005, 571, 3-17. [3] Ito, K.; Kawanishi, S.; Biochemistry 1997, 36, 1774–1781. [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [3] Ito, K.; Kawanishi, S.; Biochemistry 1997, 36, 1774–1781. [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [1] Ravanat, J. -L.; Douki, T.; Cadet, J.; J. Photochem. Photobiol. B: Biol. 2001, 63, 88-102. [2] Cadet, J.; Sage, E.; Douki, T.; Mutat. Res. 2005, 571, 3-17. [3] Ito, K.; Kawanishi, S.; Biochemistry 1997, 36, 1774–1781. [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [3] Ito, K.; Kawanishi, S.; Biochemistry 1997, 36, 1774–1781. [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [2] Cadet, J.; Sage, E.; Douki, T.; Mutat. Res. 2005, 571, 3-17. [3] Ito, K.; Kawanishi, S.; Biochemistry 1997, 36, 1774–1781. [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [3] Ito, K.; Kawanishi, S.; Biochemistry 1997, 36, 1774–1781. [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines [4] Lorente, C.; Thomas, A. H.; Villata, L.; Hozbor, D.; Lagares, A.; Capparelli, A. L.; Pteridines