INIFTA   05425
INSTITUTO DE INVESTIGACIONES FISICO-QUIMICAS TEORICAS Y APLICADAS
Unidad Ejecutora - UE
congresos y reuniones científicas
Título:
The contracted equations formalism and effectiveness of combining the G-particle-hole Hypervirial equation and equations of motion: a technique to characterize simple solid systems
Autor/es:
J.J. TORRES; L. LAIN; O.B. OÑA; G.E. MASSACCESI; W. TIZNADO; O.B. OÑA; G.E. MASSACCESI; W. TIZNADO; D.R. ALCOBA; A. TORRE; D.R. ALCOBA; A. TORRE; J.J. TORRES; L. LAIN
Lugar:
La Plata
Reunión:
Seminario; Seminario de la División de Química Teórica del Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas del Consejo Nacional de Investigaciones Científicas y Técnicas; 2016
Institución organizadora:
Consejo Nacional de Investigaciones Científicas y Técnicas
Resumen:
One of the most recent advances in the theory of the contracted Schrödinger and Liouville-Von Neumann equations [1], in which the G-particle-hole hypervirial equation (GHV) is solved [2], permits the direct determination of ground-state two-electron reduced density, correlation and G-particle-hole matrices that yield 97-102% of the correlation energy of atoms and molecules [3,4]. In this talk we will develop the background for these contracted equations methods, and their combination with equation-of-motion techniques to determine highly accurate energies of ionized and electron attached states of many-particle systems [5]. The introduction of the point group symmetry in this framework [6,7] turns out to be particularly suitable for characterizing solid system models, as cyclic unidimensional chains. We compare our results with those obtained from traditional methodologies for the computation of physical and chemical properties in solid state systems.[1] C. Valdemoro, in Density Matrices and Density Functionals, Proceedings of the A. J. Coleman Symposium, Kingston, Ontario, 1985, ed. by R.M. Erdahl, V. Smith, (Reidel, Dordrecht, 1987)[2] D.R. Alcoba, C. Valdemoro, L.M. Tel, E. Pérez-Romero, Int. J. Quantum Chem. 109, 3178 (2009)[3] D.R. Alcoba, L.M. Tel, E. Pérez-Romero, C. Valdemoro, Int. J. Quantum Chem. 111, 245 (2011)[4] D.R. Alcoba, C. Valdemoro, L.M. Tel, E. Pérez-Romero, O.B. Oña, J. Phys. Chem. A 115, 2599 (2011)[5] C. Valdemoro, D.R. Alcoba, L.M. Tel, Int. J. Quantum Chem. 112, 2965 (2012)[6] G.E. Massaccesi, D.R. Alcoba, O.B. Oña, J. Math. Chem. 50, 2155 (2012)[7] D.R. Alcoba, G.E. Massaccesi, O.B. Oña, J.J. Torres-Vega, L. Lain, A. Torre, J. Math. Chem. 52, 1794 (2014)