IFIR   05409
INSTITUTO DE FISICA DE ROSARIO
Unidad Ejecutora - UE
artículos
Título:
All polarization-maintaining passively mode-locked fiber-ring ytterbium-doped laser; from net-normal to net-anomalous dispersion
Autor/es:
CUADRADO LABORDE, CHRISTIAN; CRUZ, JOSE LUIS; CARRASCOSA, ANTONIO; ANDRES BOU, MIGUEL; DIEZ, ANTONIO
Revista:
LASER PHYSICS
Editorial:
MAIK NAUKA/INTERPERIODICA/SPRINGER
Referencias:
Año: 2020 vol. 30 p. 65102 - 65108
ISSN:
1054-660X
Resumen:
We investigated the behavior of a fiber-ring polarization-maintaining passively mode-locked ytterbium-doped laser in a broad range of dispersion values; i.e., from highly net-normal to net-anomalous, with a special emphasis near the zero of chromatic dispersion. Different lengths of an ad hoc polarization-maintaining photonic crystal fiber were used as intracavity dispersion compensator to shift the operation of this laser from net-normal to the net-anomalous regime. The laser generated the shortest light pulses around the zero of dispersion: 6 ps / 7ps for 0.023 ps2 / 0.045 ps2; in both cases, pulses were not transform-limited, being theoretically possible an out-of-cavity recompression down to 170 fs / 220 fs, respectively. In the net-normal regime, we obtained a stable, ultra-low frequency, emission at 1.19 MHz, with pulses with a FWHM of 162 ps and pulse energy of 115 pJ. This laser presents a somewhat symmetrical behavior at both sides of the zero of dispersion thanks to its simple filter-free configuration. The laser is also environmentally robust, insensitive against temperature variations and mechanical vibrations, due to its integrated all-polarization-maintaining design.