IAM   02674
INSTITUTO ARGENTINO DE MATEMATICA ALBERTO CALDERON
Unidad Ejecutora - UE
artículos
Título:
Sectional curvature and commutation of pairs of selfadjoint operators
Autor/es:
ESTEBAN ANDRUCHOW, LÁZARO RECHT
Revista:
JOURNAL OF OPERATOR THEORY
Editorial:
The Theta Foundation
Referencias:
Lugar: Bucharest; Año: 2006 vol. 55 p. 225 - 225
ISSN:
0379-4024
Resumen:
The space $g^+$ of postive invertible operators of a C$^*$-algebra $al$, with the appropriate Finsler metric, behaves like a (non positively curved) symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements $x,yinal$ (regarded as tangent vectors at $ain g^+$) verify that$$|x-y|_ale d(exp_a(x),exp_a(y)).$$In this paper we investigate the ocurrence of the equality $$|x-y|_a=d(exp_a(x),exp_a(y)).$$If $al$ has a trace, and the trace is used to measure tangent vectors then - as in the finite dimensional classical setting - this equality is equivalent to the fact that $x$ and $y$ commute. In arbitrary C$^*$-algebras, when the usual C$^*$-norm is used, the equality is equivalent to a weaker condition. We introduce in $g^+$ an analogous of the sectional curvature for pairs of selfadjoint operators, and study the vanishing of this invariant.