INVESTIGADORES
BERTIN Diego Esteban
congresos y reuniones científicas
Título:
Dynamics and Control of an Industrial Fluidized Granulator with Multiple Beds. Application to Urea Production
Autor/es:
BERTIN, DIEGO ESTEBAN; BUCALÁ, VERÓNICA; PIÑA, JULIANA
Lugar:
Braga, Portugal
Reunión:
Congreso; CHEMPOR 2008: 10th Int. Chemical and Biological Eng. Conference; 2008
Resumen:
Depending  on  the  granular  product  requirements,  different  processes  of  size enlargement are used in industry (Litster et al., 2004). Size enlargement involves a series of events through which small particles are converted into granules with desired properties (e.g. size, product appearance, particle moisture).  The  fertilizer  industry  requires  the  production  of  compounds  that  provide,  to  plants, one of the three essential nutrients: nitrogen, phosphorus and potassium, either individually or in combination. Urea fertilizers are the most important in providing nitrogen to crops and, in  particular,  the  granulated  urea  is  the  most  concentrated  nitrogenous  solid  fertilizer. Therefore, it is widely used in the agricultural industry. The positive socio-economic impacts of  this  industry  have  been  reflected  in  fertilizers  demand,  which  increases  as  the  world´s population does.   Urea  is  initially  produced  in  liquid  form.  Once  urea  is  synthesized,  it  is  usually converted  into  particulate  material  either  through  granulation  or  prilling.  Since  granules possess  better  attributes  than  prills,  the  granulation  becomes  the  preferred  process.  The granulator is the key unit in the granulation circuit, in fact this stage it is essential to control several properties of the particulate matter that avoid potential problems associated with the storage, transportation and urea penetration into the soil (Reddy, 1998).   Among  the  available  granulators,  the  fluidized  bed  granulators  are  currently  widely used. In this type of units, very small urea particles (usually called seeds) are continuously incorporated  to  the  unit  while  a  concentrated  urea  solution  is  sprayed  inside  the  bed.  The high  heat  and  mass  transfer  rates  provided  by  the  fluidization  air  and  the  latent  heat generated   by   the   separation   of   the   solution   in   its   pure   components   facilitate   the solidification/evaporation of tiny atomized drops of the urea solution onto the solid particles.   Industrial granulators often have several growth chambers, which help to increase the solids residence time and produce narrower particle size distributions. The growing particles flow under currently from one chamber to another. Usually cooling chambers, where no urea solution  is  supplied,  are  placed  downstream  the  growth  beds.  The  purpose  of  these  last chambers is to cool down the solids to temperatures lower than those reached in the growth chambers, which are somewhat higher than 100 °C.  In this work, a dynamic model of a continuous industrial fluidized bed granulator for urea  production  is  presented.  Three  growth  and  three  cooling  chambers  in  series  are simulated. Non steady state mass and energy balances are solved for all the fluidized beds. Based on previous results (Bertín et al., 2007), complete evaporation of the water contained in the atomized drops as well as uniform temperature in each chamber are supposed.    The  understanding  of  the  urea  fluidized  bed  granulator  dynamics  is  of  great importance to produce granules with the desired attributes and to achieve stable operations of the granulation circuit to which belongs. The narrow ranges of the variables that determine good operability of the industrial granulator require thorough analysis (Knight, 2004). In view of   this,   parametric   sensitivity   studies   were   performed.   Simulations   under   different disturbances in the inlet variables were conducted in order to evaluate their influence on the granulator open-loop behavior. Within the set of analyzed process variables, those linked to the fluidized bed hydrodynamics (i.e., bed height, porosity and pressure drop) were the most affected by changes in the flowrates and temperatures of the inlet streams. Different control strategies  were  studied  to  maintain  the  bed  height,  pressure  and  temperature.  The  bed temperature has to be maintained within certain limits to guarantee the granulation stability and product quality.