INVESTIGADORES
BRUVERA Ignacio Javier
congresos y reuniones científicas
Título:
Specic Loss Power of ferrouids under Radiofrequency fields
Autor/es:
I.J. BRUVERA; C. LABORDE; P. MENDOZA ZÉLIS; G.A. PASQUEVICH; S. JACOBO; J. APHESTEGUY; M.B. FERNÁNDEZ VAN RAAP; SANCHEZ, F.H.
Lugar:
Ciudad Autónoma de Buenos Aires
Reunión:
Workshop; At the Frontiers of Condensed Matter V; 2010
Institución organizadora:
Comisión nacional de energía atómica
Resumen:
FerroFLuids (FF) are liquid suspensions of magnetic nanoparticles. When FF are submitted to a radiofrequency (RF) magnetic field, the nanoparticles dissipate energy. In the case of single domain particles two relaxation mechanisms exist, known as Neel and Brown mechanisms. Neel relaxation depends on particle magnetic anisotropy, whereas Brown relaxation depends on fluid viscosity. Both types of relaxation depend on temperature and particle size, but through di erent functional expressions. Except for the infrequent situation in which the two relaxation times are equal, relaxation occurs almost entirely by one of the two mechanisms. In this work we study aqueous FFs of ZnxF e3xO4( 0  x  0:5). We have determined the FF Speci c Loss Power (SLP), de ned as the power dissipated per mass unit of nanoparticles, as a function of RF eld parameters (amplitude H0 and frequency f) and FF concentrations. H0 was varied up to 700 Oe and discrete f values between 160 kHz and 260 kHz were used. The nanoparticles mass/water volume ratio, R = mNP =VF F , was varied from about 1 g/l to 10 g/l. We observed that measured SLPs did not depend on R. On the other hand, SLP f and H0 dependences deviate slightly but clearly from the behaviors found in the literature. It was reported that SLP depends linearly and quadratically with f and H0, respectively [1]. The experimental results indicate that for eld amplitude larger than about 500 Oe, SLP increases at a slower rate than predicted by the power H0^2 low, suggesting saturation e ffects. Simulations based on the StonerWholfahrt model modi ed for nite temperature conditions, give a consistent account of the observations. The simulations illustrate how the MH minor loops shape determines the previously mentioned dependences.