CIOP   05384
CENTRO DE INVESTIGACIONES OPTICAS
Unidad Ejecutora - UE
artículos
Título:
Leds used as spectral selective light detectors in remote sensing techniques
Autor/es:
C. WEBER; J. O. TOCHO; E. J. RODRÍGUEZ
Revista:
Journal of Physics: Conference Series (JPCS)
Editorial:
IOP PUBLISHING LTD
Referencias:
Lugar: Londres; Año: 2010
ISSN:
1742-6588
Resumen:
Remote sensing has been commonly considered as an effective technique in developing precision agriculture tools. Ground based and satellite spectral sensors have wide uses to retrieve remotely quantitative biophysical and biochemical characteristics of vegetation canopies as well as vegetation ground cover. Usually in-field remote sensing technologies use either a combination of interferential filters and photodiodes or different compact spectrometers to separate the spectral regions of interest. In this paper we present a new development of a sensor with LEDs used as spectrally selective photodetectors. Its performance was compared with a photodiode-filter sensor used in agronomic applications. Subsequent measurements of weed cover degree were performed and compared with other methodologies. Results show that the new LEDs based sensor has similar features that conventional ones to determining the weed soil cover degree; while LEDs based sensor has comparative advantages related its very low manufacturing cost and its robustness compatible with agricultural field applications. developing precision agriculture tools. Ground based and satellite spectral sensors have wide uses to retrieve remotely quantitative biophysical and biochemical characteristics of vegetation canopies as well as vegetation ground cover. Usually in-field remote sensing technologies use either a combination of interferential filters and photodiodes or different compact spectrometers to separate the spectral regions of interest. In this paper we present a new development of a sensor with LEDs used as spectrally selective photodetectors. Its performance was compared with a photodiode-filter sensor used in agronomic applications. Subsequent measurements of weed cover degree were performed and compared with other methodologies. Results show that the new LEDs based sensor has similar features that conventional ones to determining the weed soil cover degree; while LEDs based sensor has comparative advantages related its very low manufacturing cost and its robustness compatible with agricultural field applications.