INVESTIGADORES
CALZETTA Esteban Adolfo
artículos
Título:
Nonlinear fluctuations in relativistic causal fluids
Autor/es:
MIRON-GRANESE, NAHUEL; KANDUS, ALEJANDRA; CALZETTA, ESTEBAN
Revista:
JOURNAL OF HIGH ENERGY PHYSICS - (Online)
Editorial:
Springer
Referencias:
Lugar: Berlin; Año: 2020 vol. 2020
ISSN:
1029-8479
Resumen:
In the Second Order Theories (SOT) of real relativistic fluids, the non-ideal properties of the flows are described by a new set of dynamical tensor variables. In this work we explore the non-linear dynamics of those variables in a conformal fluid. Among all possible SOTs, we choose to work with the Divergence Type Theories (DTT) formalism, which ensures that the second law of thermodynamics is fullled non-perturbatively. The tensor modes include two divergence-free modes which have no analog in theories based on covariant generalizations of the Navier-Stokes equation, and that are particularly relevant because they couple linearly to a gravitational eld. To study the dynamics of this irreducible tensor sector, we observe that in causal theories such as DTTs, thermal fluctuations induce a stochastic stirring force, which excites the tensor modes while preserving energy momentum conservation. From fluctuation-dissipation considerations it follows that therandom force is Gaussian with a white spectrum. The irreducible tensor modes in turn excite vector modes, which back-react on the tensor sector, thus producing a consistent non-linear, second order description of the divergence-free tensor dynamics. Using the Martin-Siggia-Rose (MSR) formalism plus the Two-Particle Irreducible Effective Action (2PIEA) formalism, we obtain the one-loop corrected equations for the relevant two-point correlation functions of the model: the retarded propagator and the Hadamard function. The overall result of the self-consistent dynamics of the irreducible tensor modes at this order is a depletion of the spectrum in the UV sector, which suggests that tensor modes could sustain an inverse entropy cascade.