INVESTIGADORES
PADILLA Nelson
artículos
Título:
The VLT LBG Redshift Survey - I. Clustering and dynamics of ≈1000 galaxies at z≈ 3
Autor/es:
BIELBY, R.M.; SHANKS, T.; WEILBACHER, P.M.; INFANTE, L.; CRIGHTON, N.H.M.; BORNANCINI, C.; BOUCHÉ, N.; HÉRAUDEAU, P.; LAMBAS, D.G.; LOWENTHAL, J.; MINNITI, D.; PADILLA, N.; PETITJEAN, P.; THEUNS, T.
Revista:
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Editorial:
WILEY-BLACKWELL PUBLISHING, INC
Referencias:
Año: 2011 vol. 414 p. 2 - 27
ISSN:
0035-8711
Resumen:
We present the initial imaging and spectroscopic data acquired as part of the Very Large Telescope (VLT) VIMOS Lyman-break galaxy Survey. UBR (or UBVI) imaging covers five ≈36 × 36 arcmin2 fields centred on bright z > 3 quasi-stellar objects (QSOs), allowing ≈210002 < z < 3.5 galaxy candidates to be selected using the Lyman-break technique. We performed spectroscopic follow-up using VLT VIMOS, measuring redshifts for 1020 z > 2 Lyman-break galaxies and 10 z > 2 QSOs from a total of 19 VIMOS pointings. From the galaxy spectra, we observe a 625 ± 510kms-1 velocity offset between the interstellar absorption and Lyman α emission-line redshifts, consistent with previous results. Using the photometric and spectroscopic catalogues, we have analysed the galaxy clustering at z≈ 3. The angular correlation function, w(θ), is well fitted by a double power law with clustering scalelength, r0= 3.19+0.32-0.54h-1Mpc and slope γ= 2.45 for r < 1h-1Mpc and r0= 4.37+0.43-0.55h-1Mpc with γ= 1.61 ± 0.15 at larger scales. Using the redshift sample we estimate the semiprojected correlation function, wp(σ), and, for a γ= 1.8 power law, find r0= 3.67+0.23-0.24h-1Mpc for the VLT sample and r0= 3.98+0.14-0.15h-1Mpc for a combined VLT+Keck sample. From ξ(s) and ξ(σ, π), and assuming the above ξ(r) models, we find that the combined VLT and Keck surveys require a galaxy pairwise velocity dispersion of ≈700kms-1, higher than ≈400kms-1 assumed by previous authors. We also measure a value for the gravitational growth rate parameter of β(z= 3) = 0.48 ± 0.17, again higher than that previously found and implying a low value for the bias of b= 2.06+1.1-0.5. This value is consistent with the galaxy clustering amplitude which gives b= 2.22 ± 0.16, assuming the standard cosmology, implying that the evolution of the gravitational growth rate is also consistent with Einstein gravity. Finally, we have compared our Lyman-break galaxy clustering amplitudes with lower redshift measurements and find that the clustering strength is not inconsistent with that of low-redshift L* spirals for simple ´long-lived´ galaxy models. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.