INVESTIGADORES
SANCHEZ Cristian Gabriel
artículos
Título:
UV Photofragmentation of Cold Cytosine-M+ Complexes (M+: Na+, K+, Ag+)
Autor/es:
TACCONE, MARTÍN I.; CRUZ-ORTIZ, ANDRÉS F.; DEZALAY, JORDAN; SOORKIA, SATCHIN; BROQUIER, MICHEL; GRÉGOIRE, GILLES; SÁNCHEZ, CRISTIÁN G.; PINO, GUSTAVO A.
Revista:
JOURNAL OF PHYSICAL CHEMISTRY A
Editorial:
AMER CHEMICAL SOC
Referencias:
Año: 2019 vol. 123 p. 7744 - 7750
ISSN:
1089-5639
Resumen:
The UV photofragmentation spectra of cold cytosine-M+ complexes (M+: Na+, K+, Ag+) were recorded and analyzed through comparison with geometry optimizations and frequency calculations of the ground and excited states at the SCS-CC2/Def2-SVPD level of theory. While in all complexes, the ground state minimum geometry is planar (Cs symmetry), the ππ∗ state minimum geometry has the NH2 group slightly twisted and an out-of-plane metal cation. This was confirmed by comparing the simulated ππ∗ Franck-Condon spectra with the vibrationally resolved photofragmentation spectra of CytNa+ and CytK+. Vertical excitation transitions were also calculated to evaluate the energies of the CT states involving the transfer of an electron from the Cyt moiety to M+. For both CytK+ and CytNa+ complexes, the first CT state corresponds to an electron transfer from the cytosine aromatic πring to the antibonding σ∗ orbital centered on the alkali cation. This πσ∗ state is predicted to lie much higher in energy (>6 eV) than the band origin of the π-π∗ electronic transition (around 4.3 eV) unlike what is observed for the CytAg+ complex for which the first excited state has a nOσ∗ electronic configuration. This is the reason for the absence of the Cyt+ + M charge transfer fragmentation channel for CytK+ and CytNa+ complexes.