INQUISAL   20936
INSTITUTO DE QUIMICA DE SAN LUIS "DR. ROBERTO ANTONIO OLSINA"
Unidad Ejecutora - UE
artículos
Título:
Microfluidic immunosensor design for the quantification of interleukin-6
Autor/es:
GERMÁN A. MESSINA; NANCY V. PANINI; NOELIA A. MARTINEZ; JULIO RABA
Revista:
ANALYTICAL BIOCHEMISTRY
Editorial:
Elsevier
Referencias:
Año: 2008 vol. 380 p. 262 - 267
ISSN:
0003-2697
Resumen:
a b s t r a c t Interleukin-6 (IL-6), an inflammatory cytokine, is one of the most important mediators of fever, the acute phase response, and inflammatory conditions. Described here is an integrated microfluidic immunosensor capable of detecting the concentration of IL-6 in human serum samples by use of an electrochemical method in a microfluidic biochip format. The detection of IL-6 was carried out using a sandwich immunoassay method based on the use of anti-IL-6 monoclonal antibodies, immobilized on a 3-aminopropylmodified controlled-pore glass (APCPG) packet in a central channel (CC) of the microfluidic system. The IL-6 in the serum sample is allowed to react immunologically with the immobilized anti-IL-6 and biotinlabeled second antibodies specific to IL-6. After washing, the streptavidin–alkaline phosphatase conjugate is added. p-Aminophenyl phosphate is converted to p-aminophenol by alkaline phosphatase, and the electroactive product is quantified on a gold electrode at 0.10 V. For electrochemical detection and enzyme immunoassay, the LOD was 0.41 and 1.56 pg mL1, respectively. Reproducibility assays employed repetitive standards of IL-6, and the intra- and inter-assay coefficients of variation were below 6.5%. Compared with the traditional IL-6 sensing method, the integrated microfluidic immunosensor required smaller amounts of sample to perform faster detection. employed repetitive standards of IL-6, and the intra- and inter-assay coefficients of variation were below 6.5%. Compared with the traditional IL-6 sensing method, the integrated microfluidic immunosensor required smaller amounts of sample to perform faster detection. the electroactive product is quantified on a gold electrode at 0.10 V. For electrochemical detection and enzyme immunoassay, the LOD was 0.41 and 1.56 pg mL1, respectively. Reproducibility assays employed repetitive standards of IL-6, and the intra- and inter-assay coefficients of variation were below 6.5%. Compared with the traditional IL-6 sensing method, the integrated microfluidic immunosensor required smaller amounts of sample to perform faster detection. employed repetitive standards of IL-6, and the intra- and inter-assay coefficients of variation were below 6.5%. Compared with the traditional IL-6 sensing method, the integrated microfluidic immunosensor required smaller amounts of sample to perform faster detection. p-Aminophenyl phosphate is converted to p-aminophenol by alkaline phosphatase, and the electroactive product is quantified on a gold electrode at 0.10 V. For electrochemical detection and enzyme immunoassay, the LOD was 0.41 and 1.56 pg mL1, respectively. Reproducibility assays employed repetitive standards of IL-6, and the intra- and inter-assay coefficients of variation were below 6.5%. Compared with the traditional IL-6 sensing method, the integrated microfluidic immunosensor required smaller amounts of sample to perform faster detection. employed repetitive standards of IL-6, and the intra- and inter-assay coefficients of variation were below 6.5%. Compared with the traditional IL-6 sensing method, the integrated microfluidic immunosensor required smaller amounts of sample to perform faster detection. 1, respectively. Reproducibility assays employed repetitive standards of IL-6, and the intra- and inter-assay coefficients of variation were below 6.5%. Compared with the traditional IL-6 sensing method, the integrated microfluidic immunosensor required smaller amounts of sample to perform faster detection.