INVESTIGADORES
BOSIO Valeria Elizabeth
artículos
Título:
Binding and Encapsulation of Doxorubicin on Smart Pectin Hydrogels for Oral Delivery
Autor/es:
BOSIO V.E.; MACHAIN, V.; LOPEZ A.G.; DE BERTI I.O.; MARCHETTI S.G.; MECHETTI M.; CASTRO G.R
Revista:
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Editorial:
HUMANA PRESS INC
Referencias:
Lugar: Oregon; Año: 2012 vol. 167 p. 1365 - 1376
ISSN:
0273-2289
Resumen:
Pectins (Pec) of 33 to 74 % esterification degree were tested with doxorubicin (Dox), a very high toxic drug widely used in cancer therapies. Pec with 35 and 55 % DE were selected because of the Dox binding higher than Pec microspheres of 35 and 55 % obtained by ionotropic gelation with Ca(+2) have 88 and 66 % Dox loading capacity. Kinetic Dox release showed more than 80.0 and about 30.0 % free drug from 35 % and 55 % Pec formulations at pH 7.4, and 37 °C after 1-h incubation, respectively. Besides, Dox release decrease to 12 % in 55 % Pec microsphere formulation after 1-year storage at 4 °C. FTIR analysis of Pec-Dox complex showed hipsochromic shifts for the σ(C=O), δ(N-H) and σ(C-C) vibrational modes compared to Dox spectrum suggesting strong interaction between the drug cargo and the matrix. Rheological studies of Pec and Pec-Dox samples flow behavior exhibited a shear-thinning nature. Fifty-five percent of Pec showed higher viscosity than the viscosity for 35 % Pec in all range of temperatures analyzed, and decreased when the temperature is raised. Besides, Pec-Dox complexes have higher viscosity values than those of the corresponding Pec samples, and viscosity curves as function of shear rate for 35 % Pec-Dox are above the curves of 55 % Pec-Dox. In both cases, the results are confirming significant interaction between the cargo and the matrix, which also was established in viscoelastic dynamic analysis.