INVESTIGADORES
SUBURO Angela Maria
artículos
Título:
Developmental pattern and distribution of nerve growth factor low-affinity receptor immunoreactivity in human spinal cord and dorsal root ganglia: comparison with synaptophysin, neurofilament and neuropeptide immunoreactivities
Autor/es:
SUBURO AM; GU X-H; MOSCOSO G; ROSS A; TERENGHI G; POLAK JM
Revista:
NEUROSCIENCE
Editorial:
Elsevier Science
Referencias:
Lugar: EEUU; Año: 1992 vol. 50 p. 467 - 482
ISSN:
0306-4522
Resumen:
Immunocytochemical expression of the low-affinity nerve growth factor receptor was studied in human fetal and adult tissues using the monoclonal antibody ME20.4. In dorsal root ganglia, a few immunoreactive neurons were first detected in nine-week-old fetuses and many more were found in the following weeks of gestation. However, none was present in adult ganglia. The ME20.4-positive cells were larger than neurons immunostained by substance P, calcitonin gene-related peptide or galanin antibodies. In the spinal cord, fibres immunostained by ME20.4 appeared in a characteristic pattern that differed from the spatial and temporal distributions of synaptophysin- and neurofilament-immunoreactive fibres. Those expressing the low-affinity nerve growth factor receptor were only detected in regions containing collaterals of primary sensory axons: (i) in the dorsal funiculus between seven and 18 weeks of gestation; (ii) in a ventrodorsal bundle reaching the ventral horn from weeks 12-14; (iii) in the medial region of the dorsal horn between weeks 12 and 20; (iv) in the superficial layers and lateral portion of the dorsal horn after the 14th week of gestation and also in adult spinal cord. During the fetal period, ME20.4 immunoreactivity was also found in motoneurons and peripheral nerve fibres in the skin, myotomes and gut. Sheaths of peripheral nerves and the adventitia of blood vessels were stained both in fetal and adult tissues. Thus, the low-affinity nerve growth factor receptor is: (i) strongly expressed in the developing human nervous system; (ii) transiently associated with a subset of large primary sensory neurons and with motoneurons; (iii) transiently and sequentially expressed by various groups of sensory afferents to the spinal cord; (iv) permanently expressed by fibres in the superficial layers of the dorsal horn, Clarke´s column, nerve sheaths and the adventitia of blood vessels.