INVESTIGADORES
MICHAUT Marcela Alejandra
artículos
Título:
Phosphorylated MARCKS: A novel centrosome component that also defines a peripheral subdomain of the cortical actin cp in mouse eggs
Autor/es:
MICHAUT, MARCELA A.; WILLIAMS, CARMEN J; SCHULTZ, RICHARD M
Revista:
DEVELOPMENTAL BIOLOGY
Editorial:
Elsevier Inc
Referencias:
Año: 2005 p. 26 - 37
ISSN:
0012-1606
Resumen:
MARCKS (myristoylated alanine-rich C-kinase substrate) is a major substrate for protein kinase C (PKC), a kinase that has multiple functions during oocyte maturation and egg activation, for example, spindle function and cytoskeleton reorganization. We examined temporal and spatial changes in p-MARCKS localization during maturation of mouse oocytes and found that p-MARCKS is a novel centrosome component based its co-localization with pericentrin and g-tubulin within microtubule organizing centers (MTOCs). Like pericentrin, p-MARCKS staining at the MI spindle poles was asymmetric. Based on this asymmetry, we found that one end of the spindle was preferentially extruded with the first polar body. At MII, however, the spindle poles had symmetrical p-MARCKS staining. p-MARCKS also was enriched in the periphery of the actin cap overlying the MI or MII spindle to form a ring-shaped subdomain. Because phosphorylation of MARCKS modulates its actin crosslinking function, this localization suggests p-MARCKS functions as part of the contractile apparatus during polar body emission. Our finding that an activator of conventional and novel PKC isoforms did not increase the amount of p-MARCKS suggested that an atypical isoform was responsible for MARCKS phosphorylation. Consistent with this idea, immunostaining revealed that the staining patterns of p-MARCKS and the active form of the atypical PKC psi/lambda isoform(s) were very similar. These results show that p-MARCKS is a novel centrosome component and also defines a previously unrecognized subdomain of the actin cap overlying the spindle.