INVESTIGADORES
GARCIA Guillermo Manuel
artículos
Título:
Molecular tools for cryptic Candida species identification with applications in a clinical laboratory
Autor/es:
GAMARRA, SOLEDAD; DUDIUK, CATIANA; MANCILLA, ESTEFANÍA; VERA-GARATE, MARÍA VERÓNICA; GUERRERO, SERGIO ADRIAN; GARCIA, GUILLERMO
Revista:
BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION
Editorial:
JOHN WILEY & SONS INC
Referencias:
Lugar: New York; Año: 2013 vol. 41 p. 180 - 186
ISSN:
1470-8175
Resumen:
Candida spp. includes more than 160 species but only 20 species pose clinical problems. C. albicans and C. parapsilosis account for more than 75% of all the fungemias worldwide. In 1995 and 2005, one C. albicans and two C. parapsilosis-related species were described, respectively. Using phenotypic traits, the identification of these newly described species is inconclusive or impossible. Thus, molecular-based procedures are mandatory. In the proposed educational experiment we have adapted different basic molecular biology techniques designed to identify these species including PCR, multiplex PCR, PCRbased restriction endonuclease analysis and nuclear ribosomal RNA amplification. During the classes, students acquired the ability to search and align gene sequences, design primers, and use bioinformatics software. Also, in the performed experiments, fungal molecular taxonomy concepts were introduced and the obtained results demonstrated that classic identification (phenotypic) in some cases needs to be complemented with molecular-based techniques. As a conclusion we can state that we present an inexpensive and well accepted group of classes involving important concepts that can be recreated in any laboratory.spp. includes more than 160 species but only 20 species pose clinical problems. C. albicans and C. parapsilosis account for more than 75% of all the fungemias worldwide. In 1995 and 2005, one C. albicans and two C. parapsilosis-related species were described, respectively. Using phenotypic traits, the identification of these newly described species is inconclusive or impossible. Thus, molecular-based procedures are mandatory. In the proposed educational experiment we have adapted different basic molecular biology techniques designed to identify these species including PCR, multiplex PCR, PCRbased restriction endonuclease analysis and nuclear ribosomal RNA amplification. During the classes, students acquired the ability to search and align gene sequences, design primers, and use bioinformatics software. Also, in the performed experiments, fungal molecular taxonomy concepts were introduced and the obtained results demonstrated that classic identification (phenotypic) in some cases needs to be complemented with molecular-based techniques. As a conclusion we can state that we present an inexpensive and well accepted group of classes involving important concepts that can be recreated in any laboratory.