INVESTIGADORES
MARTINEZ Nora Alicia
artículos
Título:
Peroxynitrites and impaired modulation of nitric oxide concentrations in embryos from diabetic rats during early organogenesis
Autor/es:
JAWERBAUM ALICIA; HIGA ROMINA; WHITE VERÓNICA; CAPOBIANCO EVANGELINA; PUSTOVRH CAROLINA; SINNER DÉBORA; MARTÍNEZ NORA; GONZÁLEZ ELIDA
Revista:
REPRODUCTION
Editorial:
OXFORD UNIVERSITY PRESSSOCIETY FOR REPRODUCTION AND FERTILITY
Referencias:
Lugar: London, UK; Año: 2005 vol. 130 p. 695 - 703
ISSN:
1470-1626
Resumen:
Maternal diabetes significantly increases the risk of congenital malformation, a syndrome known as diabetic embryopathy. Nitric oxide (NO), implicated in embryogenesis, has been found elevated in embryos from diabetic rats during organogenesis. The developmental signaling molecules endothelin-1 (ET-1) and 15-deoxy D12,14prostaglandin J2 (15dPGJ2) downregulate embryonic NO levels. In the presence of NO and superoxide, formation of the potent oxidant peroxynitrite may occur. Therefore, we investigated peroxynitrite-induced damage, ET-1 and 15dPGJ2 concentrations, and the capability of ET-1, 15dPGJ2 and prostaglandin E2 (PGE2) to regulate NO production in embryos from severely diabetic rats (streptozotocin-induced before pregnancy). We found intense nitrotyrosine immunostaining (an index of peroxynitrite-induced damage) in neural folds, neural tube and developing heart of embryos from diabetic rats (P < 0.001 vs controls). We also found reduced ET-1 (P < 0.001) and 15dPGJ2 (P < 0.001) concentrations in embryos from diabetic rats when compared with controls. In addition, the inhibitory effect of ET-1, 15dPGJ2 and PGE2 on NO production found in control embryos was not observed in embryos from severely diabetic rats. In conclusion, both the demonstrated peroxynitrite-induced damage and the altered levels and function of multiple signaling molecules involved in the regulation of NO production provide supportive evidence of nitrosative stress in diabetic embryopathy.