INVESTIGADORES
NAIPAUER Julian
artículos
Título:
Glucose and mannose analogs inhibit KSHV replication by blocking N-glycosylation and inducing the unfolded protein response
Autor/es:
SCHLESINGER, MARIANA; MCDONALD, CHRISTIAN; AHUJA, ANUJ; ALVAREZ CANETE, CAROLINA ALEJANDRA; NUÑEZ DEL PRADO, ZELMIRA; NAIPAUER, JULIAN; LAMPIDIS, THEODORE; MESRI, ENRIQUE A.
Revista:
JOURNAL OF MEDICAL VIROLOGY
Editorial:
WILEY-LISS, DIV JOHN WILEY & SONS INC
Referencias:
Año: 2023 vol. 95
ISSN:
0146-6615
Resumen:
Kaposi´s sarcoma-associated herpesvirus (KSHV) is the etiological agent for Kaposi´s sarcoma (KS), an HIV/AIDS-associated malignancy. Effective treatments against KS remain to be developed. The sugar analog 2-deoxy- d-glucose (2-DG) is an anticancer agent that is well-tolerated and safe in patients and was recently demonstrated to be a potent antiviral, including KSHV and severe acute respiratory syndrome coronavirus 2. Because 2-DG inhibits glycolysis and N-glycosylation, identifying its molecular targets is challenging. Here we compare the antiviral effect of 2-DG with 2-fluoro-deoxy- d-glucose, a glycolysis inhibitor, and 2-deoxy-fluoro- d-mannose (2-DFM), a specific N-glycosylation inhibitor. At doses similar to those clinically achievable with 2-DG, the three drugs impair KSHV replication and virion production in iSLK.219 cells via downregulation of viral structural glycoprotein expression (K8.1 and gB), being 2-DFM the most potent KSHV inhibitor. Consistently with the higher potency of 2-DFM, we found that d-mannose rescues KSHV glycoprotein synthesis and virus production, indicating that inhibition of N-glycosylation is the main antiviral target using d-mannose competition experiments. Suppression of N-glycosylation by the sugar drugs triggers ER stress. It activates the host unfolded protein response (UPR), counteracting KSHV-induced inhibition of the protein kinase R-like endoplasmic reticulum kinase branch, particularly activating transcription factor 4 and C/EBP homologous protein expression. Finally, we demonstrate that sugar analogs induce autophagy (a prosurvival mechanism) and, thus, inhibit viral replication playing a protective role against KSHV-induced cell death, further supporting their direct antiviral effect and potential therapeutic use. Our work identifies inhibition of N-glycosylation leading to ER stress and UPR as an antienveloped virus target and sugar analogs such as 2-DG and the newly identified 2-DFM as antiviral drugs.