INQUISAL   20936
INSTITUTO DE QUIMICA DE SAN LUIS "DR. ROBERTO ANTONIO OLSINA"
Unidad Ejecutora - UE
artículos
Título:
Zearalenone determination in corn silage samples using an immunosensor in a continuous-flow/stopped-flow systems
Autor/es:
PANINI NANCY V.; BERTOLINO FRANCO A.; SALINAS ELOY; MESSINA GERMÁN A.; RABA JULIO
Revista:
BIOCHEMICAL ENGINEERING JOURNAL
Editorial:
ELSEVIER SCIENCE SA
Referencias:
Año: 2010 vol. 51 p. 7 - 13
ISSN:
1369-703X
Resumen:
Zearalenone (ZEA) is a mycotoxin produced by a variety of Fusarium fungi that infects cereals. ZEA may accumulate in cereals before harvest time. This paper describes the development of an immunosensor coupled to glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNT) (CNTGCE) integrated with a continuous-flow systems for rapid and sensitive quantification of ZEA in corn silage samples. Mouse monoclonal anti-ZEA antibodies were immobilized on a rotating disk. The ZEA in corn sample is allowed to compete immunologically with ZEA bound to horseradish peroxidase (HRP) for the immobilized antibodies. HRP in presence of hydrogen peroxide (H2O2) catalyzes the oxidation of 4-tert-butylcatechol (4-TBC), whose back electrochemical reduction was detected on CNT-GCE at −0.15 V. The total assay time was 15 min. The electrochemical immunosensor showed higher sensitivity and lower detection limits than the standard ELISA method, which shows potential for detecting ZEA in foods and feeds diagnosis.