INVESTIGADORES
CASTRO Claudia Magdalena
artículos
Título:
Role of E2F and ERK1/2 in STI571-mediated smooth muscle cell growth arrest and cyclin A transcriptional repression.
Autor/es:
SANZ-GONZÁLEZ, SILVIA MARÍA; CASTRO, CLAUDIA MAGDALENA; PEREZ, PALOMA; ANDRÉS, VICENTE
Revista:
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Referencias:
Año: 2004 vol. 317 p. 972 - 979
ISSN:
0006-291X
Resumen:
1.      Platelet-derived growth factor (PDGF) ligand and receptors (PDGF-R) activate smooth muscle cell (SMC) proliferation, a key event during vascular obstructive disease. The PDGF-R tyrosine kinase inhibitor STI571 attenuates SMC proliferation and experimental neointimal thickening. Here, we investigated the molecular mechanisms underlying STI571-dependent SMC growth arrest. STI571 abrogates PDGF-BB-dependent cyclin D1 and cyclin A protein expression and inhibits transcriptional activation of reporter genes driven by the human cyclin A gene promoter. Repression of cyclin A promoter activity by STI571 requires a functional E2F-binding site, and forced expression of E2F overrides this inhibitory effect. Moreover, STI571 inhibits E2F DNA-binding activity in SMCs. We also found that STI571 abrogates PDGF-BB-dependent activation of extracellular-regulated kinase 1 and 2 (ERK1/2), and forced activation of these factors impaired STI571-dependent inhibition of both cyclin A promoter activity and SMC proliferation. Thus, E2F and ERK1/2 play an important role in STI571-mediated SMC growth arrest and cyclin A transcriptional repression. These findings may have importance in the development of novel therapeutic strategies for the treatment of neointimal hyperplasia