INVESTIGADORES
FURLONG Octavio Javier
artículos
Título:
MONTE CARLO SIMULATIONS FOR TOMLINSON SLIDING MODELS FOR NON-SINUSOIDAL PERIODIC POTENTIALS
Autor/es:
OCTAVIO JAVIER FURLONG; SERGIO JAVIER MANZI; VICTOR DANIEL PEREYRA; VICTOR BUSTOS; WILFRED T. TYSOE
Revista:
TRIBOLOGY LETTERS
Editorial:
SPRINGER/PLENUM PUBLISHERS
Referencias:
Año: 2010 vol. 39 p. 177 - 180
ISSN:
1023-8883
Resumen:
It is shown that the velocity dependence of a tungsten tip sliding against a mica surface cannot be fit to a semi-empirical analytical solution of the Tomlinson/Prandtl model using a simple sinusoidal sliding potential. This could be due to invalid assumptions in the model itself. However, if it is assumed that the periodic sliding potential is much sharper than a simple sinusoid, quantitative agreement between the experimental velocity dependence of the sliding force and theory is obtained using a single variable parameter, the height of the surface potential. Sliding is modeled in this case using Monte Carlo theory, and it is found that the height of the potential varies linearly with the normal load.