INVESTIGADORES
SOLER ILLIA galo Juan De Avila Arturo
artículos
Título:
A general method to produce templated mesoporous oxide spherical nanoparticles through a green and scalable aerosol method in aqueous solvent
Autor/es:
E. FRANCESCHINI; M. V. LOMBARDO; GALO J. A. A. SOLER-ILLIA
Revista:
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY
Editorial:
SPRINGER
Referencias:
Lugar: Berlin; Año: 2019
ISSN:
0928-0707
Resumen:
Mesoporous transition metal oxides (MTMO) with large surface area, nanocrystalline framework and controlled porosity have brilliant prospects in fields such as energy, environment, catalysis or nanomedicine. However, the green, reproducible and scalable production of MTMO still a bottleneck for their industrial applications. Although spraydrying methods permit to obtain MTMO in a potentially scalable fashion, the use of highly acidic alcoholic precursor solutions present two main limitations: corrosion and flammability, which hinder their production in large quantities and lower cost. In this work, we present a general, reproducible, simple and environment-friendly aerosol method for the synthesis of spherical MTMO particles from mildly acidic aqueous solutions. Acetylacetonate and acetate are used as condensation-controlling agents. Mixed oxides of high valence cations (M(IV) such as Ti, Zr, Ce, and their mixed oxides) were prepared with a yield over 95%, virtually without changing the formulation of the precursor mixture, which can be extended potentially to M(III) or M(V) oxides. The replacement of organic solvents by water allows working in air atmosphere, making this approach much safer, cheaper and environmentally friendly than the current aerosolbased routes. We also present the beneficial effect of mesoporous titania spheres as an additive to nickel electrodes used in the hydrogen evolution reaction, as a demonstrator to potential applications. A three-fold increase in the electrocatalytic hydrogen production is observed in mesoporous titania-modified nickel electrodes with respect to a pure nickel catalyst. This performance can be further improved approximately 25% upon UVA-visible irradiation, due to the photoelectrocatalytic effect of the mesoporous TiO2. Keywords: Mesoporous oxides; Spray-drying; Titania; Zirconia; Ceria; Photoelectrocatalysis.