INVESTIGADORES
ANGELOME Paula Cecilia
artículos
Título:
Editorial: Radiation Assisted Modifications and Processing of Colloidal and Nanomaterials for Biomedical Applications
Autor/es:
PAULA C. ANGELOMÉ; MARCO FAUSTINI; GIANLUCA GRENCI; BENEDETTA MARMIROLI
Revista:
Frontiers in Materials
Editorial:
Frontiers
Referencias:
Año: 2021
Resumen:
Nanotechnology has melted the borders among material science, chemistry, biology and medicine. The development of structured platforms chemically and/or biologically modified in ordered patterns has an increasing impact in modern medical care, i.e. for tissue engineering, organ-on-chips, or to produce biosensors for high-throughput screening. Micro and nanofluidic systems for handling and sensing chemical and biological samples will improve their performance through the employment of materials with selected functionalities in specific regions of the device. Metal Organic Frameworks, mesoporous thin films, hierarchical structures, nanoparticles, just to cite some, present high surface to volume ratio and tunable properties, rendering them promising materials for drug delivery or sensing, just to mention a few.In this context, the integration of micro/nano fabrication techniques for top-down processing with novel materials prepared with bottom-up approaches is an important objective. Despite the combination of these procedures has been pioneered over the last few years, the potential remains largely unexplored and unexploited.Bottom-up methods rely on chemical reactions and molecular self-assembly, where matter is organized through molecular interactions and chemical equilibria during wet-deposition processes. Among top-down techniques we decided to focus on controlled irradiation of materials. Many micro/nano fabrication processes are based on irradiation, like i.e. UV, X-ray, electron beam and laser lithography, focused ion beam, or microwaves.