BECAS
VERDE Alejandro RaÚl
artículos
Título:
Turning an energy-based defect detector into a multi-molecule structural indicator for water
Autor/es:
LOUBET, NICOLÁS A.; VERDE, ALEJANDRO R.; LOCKHART, JANO A.; APPIGNANESI, GUSTAVO A.
Revista:
JOURNAL OF CHEMICAL PHYSICS
Editorial:
AMER INST PHYSICS
Referencias:
Año: 2023 vol. 159
ISSN:
0021-9606
Resumen:
Recent studies have provided conclusive evidence for the existence of a liquid-liquid critical point in numerical models of water. Such a scenario implies the competition between two local molecular arrangements of different densities: a high-density liquid (HDL) and a low-density liquid (LDL). Within this context, the development of accurate structural indicators to properly characterize the two interconverting local structures is demanded. In a previous study, we introduced a reliable energy-based structural descriptor that properly discriminates water molecules into tetrahedrally arranged molecules (T molecules) and distorted molecules (D molecules). The latter constitute defects in terms of hydrogen bond (HB) coordination and have been shown to represent a minority component, even at high temperatures above the melting point. In addition, the D molecules tend to form high-quality HBs with three T molecules and to be surrounded by T and D molecules at further distances. Thus, it became evident that, while the LDL state might consist of a virtually pure T state, the HDL state would comprise mixed molecular arrangements including the D molecules. Such a need to abandon the single-molecule description requires the investigation of the degree of structural information to be incorporated in order to build an appropriate multi-molecule indicator. Hence, in this work, we shall study the effect of the local structural constraints on the water molecules in order to discriminate the different molecular arrangements into two disjoint classes. This will enable us to build a multi-molecule structural indicator for water whose performance will then be investigated within the water’s supercooled regime.