INVESTIGADORES
ABUD JuliÁn ElÍas
artículos
Título:
In vitro blastocyst implantation and trophoblast migration are disrupted by the UV filter benzophenone-3 (BP3)
Autor/es:
ABUD, JULIÁN ELÍAS; PAGOTTO, ROMINA; GALLIANI, VALENTINA; TEGLIA, CARLA; CULZONI, JULIA; BOLLATI-FOGOLÍN, MARIELA; ZENCLUSSEN, MARIA LAURA; RODRIGUEZ, HORACIO ADOLFO
Revista:
ENVIRONMENTAL POLLUTION
Editorial:
ELSEVIER SCI LTD
Referencias:
Año: 2024
ISSN:
0269-7491
Resumen:
Benzophenone-3 (BP3) is a common ingredient in personal care products (PCPs) due to its well-established effectiveness in absorbing UV radiation. Sunscreen products are among the most widely used PCPs-containing BP3 applied to the skin, resulting in significant human exposure to BP3 primarily through a dermal application. In the present work, we have tested the action of three environmentally relevant concentrations of BP3 (2, 20 and 200 μg/L) on an in vitro model of implantation of murine blastocysts and on migration ability of the human trophoblast cell line Swan 71. We showed that BP3 caused a significant reduction of blastocyst expansion and a delayed hatching in a non-monotonic way. Besides, embryos displayed a delayed attachment in the three BP3 groups, resulting in a smaller implantation area on the 6th day of culture: BP3(2) (0.32 ± 0.07 mm2); BP3(20) (0.30 ± 0.08 mm2) and BP3(200) (0.25 ± 0.06 mm2) in comparison to the control (0.42 ± 0.07 mm2). We also found a reduced migration capacity of the human first-trimester trophoblast cell line Swan 71 in a scratch assay when exposed to BP3: the lowest dose displayed a higher uncovered area (UA) at 6h when compared to the control, whereas a higher UA of the wound was observed for the three BP3 concentrations at 18 and 24 h of exposure. The changes in UA provoked by BP3 restored to normal values in the presence of flutamide, an androgen receptor (AR) inhibitor. These results indicate that a direct impairment on early embryo implantation and a defective migration of extravillous trophoblast cells through the androgen receptor pathway can be postulated as mechanisms of BP3-action on early gestation with potential impact on fetal growth.