INVESTIGADORES
BLUGUERMANN Carolina
artículos
Título:
INDUCED PLURIPOTENT STEM CELLS’ SELF-RENEWAL AND PLURIPOTENCY IS MAINTAINED BY A BOVINE GRANULOSA CELL LINE-CONDITIONED MEDIUM
Autor/es:
SOLARI CLAUDIA; LOSINO NOELIA; LUZZANI CARLOS; WEISSMAN ARIEL; BLUGUERMANN CAROLINA; QUESTA MARÍA; SEVLEVER GUSTAVO EMILIO; MIRIUKA SANTIAGO G; BARAÑAO LINO; GUBERMANN ALEJANDRA
Revista:
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Editorial:
ACADEMIC PRESS INC ELSEVIER SCIENCE
Referencias:
Lugar: Amsterdam; Año: 2011 p. 252 - 257
ISSN:
0006-291X
Resumen:
Induced pluripotent stem cells (iPSCs) are a promising type of stem cells, comparable to embryonic stem cells (ESCs) in terms of self-renew and pluripotency, generated by reprogramming somatic cells. These cells are an attractive approach to supply patient-specific pluripotent cells, for producing in vitro models of disease, drug discovery, toxicology and potentially treating degenerative disease circumventing immune rejection. In spite of the great advance since iPSCs’ establishment, their obtention and propagation is an increasing area of great interest.In a recent work, we have shown that the conditioned medium from a bovine granulosa cell line (BGCCM) is able to preserve the basic properties of mESCs. Therefore, based on our previous results and the reported resemblance between iPSCs and ESCs, we hypothesized that BGC-CM could provide a favorable context to culturing iPSCs. In this work, we have reprogrammed mouse embryonic fibroblasts obtaining iPSC lines, and showed that they can be propagated in BGC-CM while maintaining self-renewal and pluripotency, evidenced by expression of specific gene markers and capability of in vitro and in vivo differentiation to cell types from the three germ layers. We believe that these findings may provide a novel context to propagate iPSCs to study the molecular mechanisms involved in self-renewal an  pluripotency.