PERSONAL DE APOYO
VISO Juan Francisco
artículos
Título:
Molecular mechanisms of 33-mer gliadin peptide oligomerisation
Autor/es:
AMUNDARAIN, MARÍA JULIA; HERRERA, MARÍA GEORGINA; ZAMARREÑO, FERNANDO; VISO, JUAN FRANCISCO; COSTABEL, MARCELO D.; DODERO, VERÓNICA I.
Revista:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Editorial:
ROYAL SOC CHEMISTRY
Referencias:
Lugar: CAMBRIDGE; Año: 2019 vol. 21 p. 22539 - 22552
ISSN:
1463-9076
Resumen:
The proteolytic resistant 33-mer gliadin peptide is an immunodominant fragment in gluten and responsible for the celiac disease and other gluten-related disorders. Meanwhile, the primary structure of the 33-mer is associated with the adaptive immune response in celiac patients, and the structural transformation of the 33-mer into protofilaments activates a primordial innate immune response in human macrophages. This means that accumulation, oligomerisation and structural transformation of the 33-mer could be the unknown first event that triggers the disease. Herein, we reveal the early stepwise mechanism of 33-mer oligomerisation by combining multiple computational simulations, tyrosine cross-linking, fluorescence spectroscopy and circular dichroism experiments. Our theoretical findings demonstrated that the partial charge distribution along the 33-mer molecule and the presence of glutamine that favours H-bonds between the oligomers are the driving forces that trigger oligomerisation. The high content of proline is critical for the formation of the flexible PPII secondary structure that led to a β structure transition upon oligomerisation. Experimentally, we stabilised the 33-mer small oligomers by dityrosine cross-linking, detecting from dimers to higher molecular weight oligomers, which confirmed our simulations. The relevance of 33-mer oligomers as a trigger of the disease as well as its inhibition may be a novel therapeutic strategy for the treatment of gluten-related disorders.