INVESTIGADORES
TONELLI Maria Laura
artículos
Título:
Rhizobia phylogenetically related to common bean symbionts Rhizobium giardinii and R. tropici isolated from peanut nodules in Central Argentina
Autor/es:
IBAÑEZ, F., TAURIAN, T., ANGELINI, J., TONELLI, M.L., FABRA, A.
Revista:
SOIL BIOLOGY AND BIOCHEMISTRY
Editorial:
ELSEVIER
Referencias:
Año: 2008 vol. 40 p. 537 - 539
ISSN:
0038-0717
Resumen:
Our previous studies of the native rhizobial population associated with peanut nodules in the Córdoba soils of Argentina revealed that this population is highly diverse and includes slow- and fast-growing isolates. The native fast-growing isolates NCHA22 and NET30 were selected on the basis of their plant growth promoting properties and their chromosomal genotypes were determined by 16S rDNA sequencing. NCHA22 and NET30 16S rDNA alleles were found to cluster with those of Rhizobium tropici group IIB and Rhizobium giardinii bv. giardinii strain H152, respectively. We have now characterized these isolates by analyzing the glnA and nifH genes to clarify their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. giardinii bv. giardinii strain H152, respectively. We have now characterized these isolates by analyzing the glnA and nifH genes to clarify their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. giardinii bv. giardinii strain H152, respectively. We have now characterized these isolates by analyzing the glnA and nifH genes to clarify their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. giardinii bv. giardinii strain H152, respectively. We have now characterized these isolates by analyzing the glnA and nifH genes to clarify their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. Rhizobium tropici group IIB and Rhizobium giardinii bv. giardinii strain H152, respectively. We have now characterized these isolates by analyzing the glnA and nifH genes to clarify their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains. bv. giardinii strain H152, respectively. We have now characterized these isolates by analyzing the glnA and nifH genes to clarify their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains.