INVESTIGADORES
BENEDINI Luciano Alejandro
artículos
Título:
Adsorption/desorption study of antibiotic and anti-inflammatory drugs onto bioactive hydroxyapatite nano-rods
Autor/es:
BENEDINI, LUCIANO; PLACENTE, DAMIÁN; RUSO, JUAN; MESSINA, PAULA
Revista:
MATERIALS SCIENCE & ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Año: 2019 vol. 99 p. 180 - 190
ISSN:
0928-4931
Resumen:
The use of high doses of antibacterial and anti-inflammatory drugs for patients with bone diseases, associated to implants or bone filling, can develop adverse effects; and consequently, it promotes to think new strategies to avoid this problem. In this work, it has been described the adsorption/release (or desorption) behavior of two drugs, ciprofloxacin (CIP) and ibuprofen (IBU), onto hydroxyapatite (nano-HA) at 37 °C. Through Ultraviolet-Visible (UV?Vis) spectroscopy, the concentrations of both drugs in adsorption, kinetic and desorption processes were obtained. The Fourier Transformed-Infrared (FT-IR) spectroscopy, Zeta-potential (ζ-potential), High-Resolution Transmission Electron Microscopy (H-TEM) and x-Ray Diffraction (xRD) were also used to characterize bared nanoparticles and those with adsorbed drugs. Five adsorption models (Langmuir, Freundlich, Sips, Temkin and Dubinin-Radushkevich) were used for describing the behavior of both active compounds. The adsorption processes (CIP/nano-HA and IBU/nano-HA) were better predicted by the Sips model than by the others. The kinetic adsorption data were processed, for both active agents, by application of Avrami´s model. Desorption/release process (of both drugs) was evaluated though Korsmeyer-Peppas (K-P) model. Owing to the predictability of these systems, we propose the use of these active ceramics as potential bone filler for improving the treatment against bacterial bone infections and to avoid its associated inflammatory process.