INVESTIGADORES
RITACCO Hernan Alejandro
artículos
Título:
Adsorption Kinetics and Mechanical Properties of Ultrathin Polyelectrolyte Multilayers: Liquid-Supported versus Solid-Supported Films
Autor/es:
EDUARDO GUZMÁN; HERNÁN RITACCO; FRANCISCO ORTEGA; TATIANA SVITOVA; C. J. RADKE; R-G RUBIO
Revista:
Journal of Physical Chemistry B
Editorial:
American Chemical Society
Referencias:
Lugar: 1155 16TH ST, NW, WASHINGTON, DC 20036; Año: 2009 vol. 113 p. 7128 - 7137
ISSN:
1520-6106
Resumen:
Multilayers of sodium salt of poly(4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium) chloride (PDADMAC) have been built layer by layer (LbL) both at the solid/aqueous interface (solid supported) and the air/aqueous interface (liquid supported). For the solid-supported multilayers, the adsorption kinetics and the complex shear modulus were measured using a dissipative quartz crystal microbalance and a null ellipsometer. A bubble tensiometer was used to measure the adsorption kinetics and the elasticity modulus of the liquid-supported multilayers. At the solid/aqueous interface, adsorption kinetics changes with the number of adsorbed layers. However, at the air/aqueous interface, PSS dynamics were the same for all adsorbed layers except the first. Conversely, the adsorption kinetics of PDADMAC at the air/water surface differed between those layers close to the interface and those far from it. Multilayers grow at the air/water interface by an intrinsic-charge-compensation process, whereas, for the same ionic strengths, solid-supported layers deposit by the extrinsic-charge-compensation process. No significant differences were found between the recoverable dilational storage modulus of the liquid-supported multilayers and the real part of the shear modulus of the solid-supported ones built at the same ionic strength. The values of the modulus are in the MPa range, which corresponds to gel-like films. This result is in agreement with the strong hydration degree of the LbL films calculated from ellipsometry measurements.