INVESTIGADORES
SEGNORILE Hector Hugo
artículos
Título:
Mechanisms of irreversible decoherence in solids
Autor/es:
F. D. DOMÍNGUEZ; R. C. ZAMAR; H. H. SEGNORILE; C. E. GONZÁLEZ
Revista:
PHYSICAL REVIEW B
Editorial:
AMER PHYSICAL SOC
Referencias:
Lugar: New York; Año: 2017 vol. 95 p. 2244231 - 2244239
ISSN:
1098-0121
Resumen:
Refocalization sequences in Nuclear Magnetic Resonance (NMR) can in principle reverse the coherent evolution under the secular dipolar Hamiltonian of a closed system. We use this experimental strategy to study the effect of irreversible decoherence on the signal amplitude attenuation in a single crystal hydrated salt where the nuclear spin system consists in the set of hydration water proton spins having a strong coupling within each pair and a much weaker coupling with other pairs. We study the experimental response of attenuation times with temperature, crystal orientation with respect to the external magnetic field and rf pulse amplitudes. We find that the observed attenuation of the refocalized signals can be explained by two independent mechanisms: (a) evolution under the non-secular terms of the reversion Hamiltonian, and (b) an intrinsic mechanism having the attributes of irreversible decoherence induced by the coupling with a quantum environment. To characterize (a) we compare the experimental data with the numerical calculation of the refocalized NMR signal of an artificial, closed spin system. To describe (b) we use a model for the irreversible adiabatic decoherence of spin-pairs coupled with a phonon bath which allows evaluating an upper bound for the decoherence times. This model accounts for both the observed dependence of the decoherence times on the eigenvalues of the spin-environment Hamiltonian, and the independence on the sample temperature. This result, then, supports the adiabatic decoherence induced by the dipole-phonon coupling as the explanation for the observed irreversible decay of reverted NMR signals in solids.