INVESTIGADORES
MURGIDA Daniel Horacio
artículos
Título:
In situ spectroelectrochemical investigations of electrode-confined electron transferring proteins and redox enzymes
Autor/es:
MURGIDA, D.H.
Revista:
ACS Omega
Editorial:
American Chemical Society
Referencias:
Año: 2021 vol. 6 p. 3435 - 3446
Resumen:
This perspective analyzes recent advances in the spectroelectrochemical investigation of redox proteins and enzymes immobilized on biocompatible or biomimetic electrode surfaces. Specifically, the article highlights new insights obtained by surface-enhanced resonance Raman (SERR), surface-enhanced infrared absorption (SEIRA), protein film infrared electrochemistry (PFIRE), polarization modulation infrared reflection?absorption spectroscopy (PMIRRAS), Förster resonance energy transfer (FRET), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and differential electrochemical mass spectrometry (DMES)-based spectroelectrochemical methods on the structure, orientation, dynamics, and reaction mechanisms for a variety of immobilized species. This includes small heme and copper electron shuttling proteins, large respiratory complexes, hydrogenases, multicopper oxidases, alcohol dehydrogenases, endonucleases, NO-reductases, and dye decolorizing peroxidases, among other enzymes. Finally, I discuss the challenges and foreseeable future developments toward a better understanding of the functioning of these complex macromolecules and their exploitation in technological devices.