INVESTIGADORES
BERTUCCI Cesar
artículos
Título:
Statistical distribution of mirror-mode-like structures in the magnetosheaths of unmagnetized planets - Part 2: Venus as observed by the Venus Express spacecraft
Autor/es:
M. VOLWERK ET AL; C. BERTUCCI
Revista:
Annales Geophysicae
Editorial:
Copernicus Publications
Referencias:
Año: 2023 vol. 41 p. 389 - 408
Resumen:
In this series of papers, we present statistical maps of mirror-mode-like (MM) structures in the magnetosheaths of Mars and Venus and calculate the probability of detecting them in spacecraft data. We aim to study and compare them with the same tools and a similar payload at both planets. We consider their dependence on extreme ultraviolet (EUV) solar flux levels (high and low).The detection of these structures is done through magnetic-field-only criteria, and ambiguous determinations are checked further. In line with many previous studies at Earth, this technique has the advantage of using one instrument (a magnetometer) with good time resolution, facilitating comparisons between planetary and cometary environments.Applied to the magnetometer data of the Venus Express (VEX) spacecraft from May 2006 to November 2014, we detect structures closely resembling MMs lasting in total more than 93 000 s, corresponding to about 0.6 % of VEX's total time spent in Venus's plasma environment. We calculate MM-like occurrences normalized to the spacecraft's residence time during the course of the mission. Detection probabilities are about 10 % at most for any given controlling parameter.In general, MM-like structures appear in two main regions: one behind the shock and the other close to the induced magnetospheric boundary, as expected from theory. For solar maximum, the active region behind the bow shock is further inside the magnetosheath, near the solar minimum bow shock location. The ratios of the observations during solar minimum and maximum are slightly dependent on the depth ΔB/B of the structures; deeper structures are more prevalent at solar maximum. A dependence on solar EUV (F10.7) flux is also present, where at higher F10.7 flux the events occur at higher values than the daily-average value of the flux. The main dependence of the MM-like structures is on the condition of the bow shock: for quasi-perpendicular conditions, the MM occurrence rate is higher than for quasi-parallel conditions. However, when the shock becomes "too perpendicular" the chance of observing MM-like structures reduces again.Combining the plasma data from the Ion Mass Analyser (IMA on board Venus Express) with the magnetometer data shows that the instability criterion for MMs is reduced in the two main regions where the structures are measured, whereas it is still enhanced in the region between these two regions, implying that the generation of MMs is transferring energy from the particles to the field. With the addition of the Electron Spectrometer (ELS on board Venus Express) data, it is possible to show that there is an anti-phase between the magnetic field strength and the density for the MM-like structures.This study is Part 2 of a series of papers on the magnetosheaths of Mars and Venus.