INBIOMED   24026
INSTITUTO DE INVESTIGACIONES BIOMEDICAS
Unidad Ejecutora - UE
artículos
Título:
Reprogramming tumor infiltrating T cells using IL-2 and inhibiting NF-κB signaling improves the efficacy of immunotherapy in a preclinical brain cancer model.
Autor/es:
YOHEI MINEHARU; AKM GHULAM MUHAMMAD; KADER YAGIZ; MARIANELA CANDOLFI; KURT M KROEGER; WEIDONG XIONG; MARIANA PUNTEL; PEDRO R LOWENSTEIN; MARIA G CASTRO
Revista:
NEUROTHERAPEUTICS
Editorial:
ELSEVIER SCIENCE INC
Referencias:
Lugar: Amsterdam; Año: 2012 p. 827 - 843
ISSN:
1933-7213
Resumen:
Immune-mediated gene therapy using adenovirus expressing Flt3 ligand and thymidine kinase followed by ganciclovir administration (Flt3/TK) effectively elicits tumor regression in preclinical glioma models. Herein, we assessed new strategies to optimize Flt3L/TK therapeutic efficacy in a refractory RG2 orthotopic glioblastoma model. Specifically, we aimed to optimize the therapeutic efficacy of Flt3L/TK treatment in the RG2 model by overexpressing the following genes within the brain tumor microenvironment: 1) a TK mutant with enhanced cytotoxicity (SR39 mutant TK), 2) Flt3L-IgG fusion protein that has a longer half-life, 3) CD40L to stimulate DC maturation, 4) T helper cell type 1 polarizing dendritic cell cytokines interleukin-12 or C-X-C motif ligand 10 chemokine (CXCL)-10, 5) C-C motif ligand 2 chemokine (CCL2) or C-C motif ligand 3 chemokine (CCL3) to enhance dendritic cell recruitment into the tumor microenvironment, 6) T helper cell type 1 cytokines interferon-γ or interleukin-2 to enhance effector T-cell functions, and 7) IκBα or p65RHD (nuclear factor kappa-B [NF-κB] inhibitors) to suppress the function of Foxp3+ Tregs and enhanced effector T-cell functions. Anti-tumor immunity and tumor specific effector T-cell functions were assessed by cytotoxic T lymphocyte assay and intracellular IFN-γ staining. Our data showed that overexpression of interferon-γ or interleukin-2, or inhibition of the nuclear factor kappa-B within the tumor microenvironment, enhanced cytotoxic T lymphocyte-mediated immune responses and successfully extended the median survival of rats bearing intracranial RG2 when combined with Flt3L/TK. These findings indicate that enhancement of T-cell functions constitutes a critical therapeutic target to overcome immune evasion and enhance therapeutic efficacy for brain cancer. In addition, our study provides novel targets to be used in combination with immune-therapeutic strategies for glioblastoma, which are currently being tested in the clinic.