IMAS   23417
INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Unidad Ejecutora - UE
artículos
Título:
Bohr's absolute convergence problem for $\mathcal{H}_p$-Dirichlet series in Banach spaces
Autor/es:
DANIEL CARANDO; ANDREAS DEFANT; PABLO SEVILLA PERIS
Revista:
Analysis & PDE
Editorial:
Math­em­at­ic­al Sci­ences Pub­lish­ers
Referencias:
Año: 2014 vol. 7 p. 513 - 527
ISSN:
2157-5045
Resumen:
The Bohr-Bohnenblust-Hille Theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series $sum_n a_n n^{-s}$ converges uniformly but not absolutely is less than or equal to $1/2$, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space $mathcal{H}_infty$ equals $1/2$. By a surprising fact of Bayart the same result holds true if $mathcal{H}_infty$ is replaced by any Hardy space $mathcal{H}_p$, $1 le p < infty$, of Dirichlet series. For Dirichlet series with coefficients in a Banach space $X$ the maximal width of Bohr´s strips depend on the geometry of $X$; Defant, Garc´ia, Maestre and P´erez-Garc´ia proved that such maximal width equal $1- 1/ct(X)$, where $ct(X)$ denotes the maximal cotype of $X$. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space $mathcal{H}_infty(X)$ equals $1- 1/ct(X)$. In this article we show that this result remains true if $mathcal{H}_infty(X)$ is replaced by the larger class $mathcal{H}_p(X)$, $1 le p < infty$.