INVESTIGADORES
PULESTON Pablo Federico
artículos
Título:
Temperature Control of a PEM Fuel Cell Test Bench for Experimental MEA Assessment
Autor/es:
J.MORE; PULESTON P.F.; C.KUNUSCH; A.VISINTIN
Revista:
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Editorial:
PERGAMON-ELSEVIER SCIENCE LTD
Referencias:
Año: 2010 vol. 35 p. 5985 - 5990
ISSN:
0360-3199
Resumen:
This paper presents the design, implementation and testing of a temperature control for a laboratory PEM fuel cell stack work bench intended for evaluation of experimental MEAs. The controller design is based on a thermal model of the fuel cell stack developed by the authors. The model is extended to the complete temperature range by considering a nonlinear description of the heating resistances. Its parameters are experimentally adjusted and its accuracy is validated in all the temperature operating range. Then, the temperature control is developed, using a proportional-integral structure with anti-windup features. It is implemented in a PC connected to an ad-hoc equipment of acquisition and control, that drives distributed cycles actuators to energize two heating resistances. The controller proved to be capable of regulating the stack temperature in a wide operating range, while eliminating the ripple typical of ON-OFF actuators. Finally, experimental results of closed loop operation are presented, demonstrating the good performance of the proposed control set up and thermal model. control, that drives distributed cycles actuators to energize two heating resistances. The controller proved to be capable of regulating the stack temperature in a wide operating range, while eliminating the ripple typical of ON-OFF actuators. Finally, experimental results of closed loop operation are presented, demonstrating the good performance of the proposed control set up and thermal model.