INVESTIGADORES
PIZARRO Haydee Norma
artículos
Título:
Algal structure of the littoral epilithon in lentic water bodies of Hope Bay, Antarctic Peninsula.
Autor/es:
BONAVENTURA S.M.; A. VINOCUR; L. ALLENDE; H. PIZARRO
Revista:
POLAR BIOLOGY
Editorial:
Springer
Referencias:
Lugar: Berlin; Año: 2006 vol. 29 p. 668 - 680
ISSN:
0722-4060
Resumen:
Abstract We studied the composition and density of the algae of the littoral epilithon and the taxa turnover in nine lentic water bodies at Hope Bay, Antarctic Peninsula, during summer 2002. At each site we measured the main physical and chemical variables, and took epilithic samples for the algal analysis. Two composed samples (one for qualitative and one for quantitative analysis) were taken randomly about 1 m away from the shoreline of each sampling site. The morphology of the algal mats could be included in the ‘moat and pond type’ in which Cyanobacteria are well represented. A total of 69 algal taxa were recorded in the whole study area. Chlorophyceae showed the highest taxa richness (33%), followed by Cyanobacteria (29%), Bacillariophyceae (26%), Chrysophyceae (10%), and Tribophyceae (2%). As a result of the redundancy analysis performed, we found that the number, composition, and density of taxa in the water bodies at Hope Bay were strongly influenced by nitrate and suspended solids concentrations and by the distance from the sea. The geographical trend in taxa turnover within Hope Bay was explained by elements from the combination of the metapopulation dynamics and the continuum theories, which are related to dispersal limitation and environmental heterogeneity, respectively.We studied the composition and density of the algae of the littoral epilithon and the taxa turnover in nine lentic water bodies at Hope Bay, Antarctic Peninsula, during summer 2002. At each site we measured the main physical and chemical variables, and took epilithic samples for the algal analysis. Two composed samples (one for qualitative and one for quantitative analysis) were taken randomly about 1 m away from the shoreline of each sampling site. The morphology of the algal mats could be included in the ‘moat and pond type’ in which Cyanobacteria are well represented. A total of 69 algal taxa were recorded in the whole study area. Chlorophyceae showed the highest taxa richness (33%), followed by Cyanobacteria (29%), Bacillariophyceae (26%), Chrysophyceae (10%), and Tribophyceae (2%). As a result of the redundancy analysis performed, we found that the number, composition, and density of taxa in the water bodies at Hope Bay were strongly influenced by nitrate and suspended solids concentrations and by the distance from the sea. The geographical trend in taxa turnover within Hope Bay was explained by elements from the combination of the metapopulation dynamics and the continuum theories, which are related to dispersal limitation and environmental heterogeneity, respectively.