INVESTIGADORES
PARAJE Maria Gabriela
artículos
Título:
Fighting Antimicrobial Resistant Microorganisms: Current Status and Emerging Strategies Using Nanomaterials
Autor/es:
PARAJE MG.; PÁEZ PL
Revista:
Frontiers in Bioengineering and Biotechnology
Editorial:
Frontiers Media S.A.
Referencias:
Año: 2021
ISSN:
2296-4185
Resumen:
The high prevalence of pathogens resistant to antimicrobials poses a huge threat to the treatment of a wide range of serious infections. Emerging strategies using nanoparticles to treat these infections is promissory, thus, the current research emphasizes the development of promising new antimicrobial drugs in the near future. Nanotechnology offers the opportunity to exploit the biological properties of these materials by manipulating their size to dimensions on the nanometer scale. The importance of the eradication of bacteria, fungi, parasites, and viruses resistant to multiples antimicrobials in the first moments of colonization justify the need to find new therapeutic alternatives associated with the eradication and control of infections. The main objective of antimicrobial treatment is to minimize the microbial inoculum, which implies the need to use biocidal drugs, which do not allow the selection of resistance mechanisms.The few effective antimicrobials against resistant microorganisms emphasize the need for new approaches through the development of different therapeutic strategies. Due to their small size and large surface area, nanomaterials possess excellent electrical, optical, magnetic, structural, and chemical properties. Optimizing the interface between biomolecules and/or ligands with nanostructured materials is currently a promising path for research of new antimicrobial therapies. The fact that nanoparticles are similar in size to intra- and extra-cellular biological components allows them to specifically interact with molecular and sub-cellular processes and manipulate biological states, structures, and functions in a radically new way, making them extremely attractive for new biomedical applications. The combination of materials science and nanomedicine has given rise to a new alternative field that involves the functionalization of nanostructures with different biologically active materials. The potential microbiological impact of nanoparticles is not only determined by their physicochemical properties, but also by the interactions of these with the immediate surrounding biological environments.