IFIBA   22255
INSTITUTO DE FISICA DE BUENOS AIRES
Unidad Ejecutora - UE
artículos
Título:
Primordial magnetic helicity from stochastic electric currents
Autor/es:
ESTEBAN CALZETTA; ALEJANDRA KANDUS
Revista:
PHYSICAL REVIEW D - PARTICLE AND FILDS
Editorial:
APS
Referencias:
Lugar: Ridge; Año: 2014 vol. 89 p. 1 - 32
ISSN:
0556-2821
Resumen:
We study the possibility that primordial magnetic fields generated in the transition between inflation and reheating posses magnetic helicity, HM. The fields are induced by stochastic currents of scalar charged particles created during the mentioned transition. We estimate the rms value of the induced magnetic helicity by computing different four-point scalar quantum electrodynamics Feynman diagrams. For any considered volume, the magnetic flux across its boundaries is in principle not null, which means that the magnetic helicity in those regions is gauge dependent. We use the prescription given by Berger and Field and interpret our result as the difference between two magnetic configurations that coincide in the exterior volume. In this case, the magnetic helicity gives only the number of magnetic links inside the considered volume. We calculate a concrete value of HM for large scales and analyze the distribution of magnetic defects as a function of the scale. Those defects correspond to regular as well as random fields in the considered volume. We find that the fractal dimension of the distribution of topological defects is D=1/2. We also study if the regular fields induced on large scales are helical, finding that they are and that the associated number of magnetic defects is independent of the scale. In this case, the fractal dimension is D=0. We finally estimate the intensity of fields induced at the horizon scale of reheating and evolve them until the decoupling of matter and radiation under the hypothesis of the inverse cascade of magnetic helicity. The resulting intensity is high enough and the coherence length long enough to have an impact on the subsequent process of structure formation.