INVESTIGADORES
MARIN Raul Hector
artículos
Título:
Short- and long-term dynamics of the physiological and behavioral response to heat stress and thymol supplementation in Japanese quail
Autor/es:
FERNANDEZ, MARIA EMILIA; LABAQUE, MARIA CARLA; ORSO, GABRIEL; MARIN, RAÚL HECTOR; KEMBRO, JACKELYN MELISSA
Revista:
JOURNAL OF THERMAL BIOLOGY
Editorial:
PERGAMON-ELSEVIER SCIENCE LTD
Referencias:
Año: 2021 vol. 97
ISSN:
0306-4565
Resumen:
Organisms have evolved endogenous timing systems that enable them to predict temporal changes and to coordinate complex internal processes. However, temporal dynamics of biological responses are most often ignored in fields such as dietary supplementation of farm animals exposed to artificial environmental challenges. Herein, we hypothesized that the potential for thymol (2-isopropyl-5-methylphenol) to alleviate physiological and behavioral consequences of heat stress is time-dependent on both long-term (i.e. weeks) and short-term (i.e. within day) time scales. First, during 3-weeks adult female Japanese quail (Coturnix japonica) were exposed daily to 9h of increased environmental temperature (34.2 ± 0.1 °C). Controls remained at standard temperatures (23.6 ± 0.1 °C). Simultaneously, half received thymol dietary supplementation and the other half a control basal diet. On day 4, both thymol and heat stress decreased body weight and feed intake respect to controls (basal, standard temperature). After three weeks, feed intake recovered for thymol groups. Therefore, we performed a second experiment focused on the critical first week of treatment, sampling variables three times a day. The beneficial effects of thymol supplementation were mainly observed during the morning, including prevention of high respiratory rates and reduction in the weight of droppings induced by heat stress, and increased walking under both temperatures. In summary, thymol´s potential for alleviating heat stress consequences is time-dependent, and can be conceived as an emergent property resulting from the complex interplay between the dynamics of the biological response to thymol and heat stress. Findings highlight the importance of considering time-related factors when developing supplementation protocols to mitigate environmental challenges.