INVESTIGADORES
GIUSTO Norma Maria
artículos
Título:
Phospholipase D and Phosphatidate phosphohydrolase activities in rat cerebellum during aging
Autor/es:
PASQUARÉ, S.J.; SALVADOR, G.; GIUSTO, N.M.
Revista:
LIPIDS
Editorial:
SPRINGER HEIDELBERG
Referencias:
Año: 2004 vol. 39 p. 553 - 560
ISSN:
0024-4201
Resumen:
Aging is a process that affects different organs, of which the brain is particularly susceptible. PA and DAG are central intermediates in the phosphoglyceride as well as in the neutral lipid biosynthetic pathway, and they have also been implicated in signal transduction. Phospholipase D (PLD) and phosphatidate phosphohydrolase (PAP) are the enzymes that generate PA and DAG. The latter can be transformed into MAG by diacylglycerol lipase (DGL). In the present study, we examine how aging modulates the PLD, PAP, and DGL isoforms in cerebellar subcellular fractions from 4- (adult), 28-, and 33-mon-old (aged) rats. PI-4,5-bisphosphonate (PIP2)-dependent PLD, PAP1, and DGL1 were distributed in different percentages in all cerebellum subcellular fractions. On the other hand, PAP2 and DGL2 activities were observed in all subcellular fractions except in the cytosolic fraction. Aging modified the enzyme distribution pattern. In addition, aging decreased nuclear (45%), mitochondrial-synaptosomal (55%), and cytosolic (71%) PAP1 activity and increased (28%) microsomal PAP1 activity. DGL1 activity was decreased in nuclear (85%) and mitochondrial-synaptosomal (63%) fractions by aging. On the other hand, PIP2-dependent PLD activities were increased in the mitochondrial-synaptosomal fraction. PAP2 and DGL2 were increased in the microsomal fraction by 87 and 114%, respectively, and they were decreased in the nuclear fraction. The changes observed in cerebellum PAP1 and DGL1 activities from aged rats with respect to adult rats could be related to modifications in lipid metabolism. Differential PA metabolization during aging through PIP2-dependent PLD/PAP2/DGL2 activities could be related to alterations in the neural signal transduction mechanisms.